
Measuring Markups with Revenue Data

Ivan Kirov
Paolo Mengano
James Traina∗

October 2023

Abstract

When output prices are unobserved, standard production-based markup
estimators are biased and inconsistent because they are unable to distin-
guish whether firms have higher revenues due to higher prices or higher
quantities. Building on work designed for competitive environments,
we propose a novel method that solves this problem using only revenue
data. We flexibly model markups as a specified function of observables
and fixed effects, supporting a broad class of variable-markup frame-
works. We explicitly adopt a Markovian revenue productivity process,
a commonly implicit assumption in the literature. Our suggested two-
step approach is simple in concept and implementation, requiring only
common regression techniques.
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The composition of firms in modern economies is changing: average firm size

is expanding, industries are concentrating, and business dynamism is declining

(Grullon et al., 2019; Decker et al., 2016). Researchers have proposed several

explanations for the driving forces behind these secular trends. One set of hy-

potheses attributes these trends to technological change or intangible capital,

typically with positive welfare implications for consumers (Autor et al., 2020;

Bessen, 2020). Another set attributes them to market power or entry barriers,

typically with negative welfare implications for consumers (De Loecker et al.,

2020; Gutiérrez and Philippon, 2019). While both perspectives may be partly

true, their policy responses differ dramatically. Central to this discourse is the

firm-level markup—the output price to marginal cost ratio—a key indicator

of market power. The size of these trends and their potential welfare implica-

tions calls for economists to reliably measure such markups consistently across

industries and over time.

Recent studies respond to this call by adopting the production approach to

markup estimation on large firm-level datasets to draw conclusions for entire

industries or economies (De Loecker et al., 2020; Traina, 2018; Diez et al.,

2018; Calligaris et al., 2018). However, econometricians originally designed

the production-function estimators underpinning this approach for perfectly

competitive environments, where variation in prices can only reflect variation

in quality. In imperfectly competitive environments, firm pricing confounds the

link between revenues and quantities, indicating a fundamental role of detailed

price information to recover unbiased and consistent markup estimates (Klette

and Griliches, 1996; Doraszelski and Jaumandreu, 2019; Bond et al., 2021).1

Yet, most production datasets lack such information, offering only revenue

data.2 Consequently, researchers interested in studying competition face a

significant gap between the theoretical models and the available data.

1Using an industry price index to recover quantities does not solve this problem (Bond
et al., 2021) except in two special cases: perfect competition, or no firm heterogeneity in
prices (Hashemi et al., 2022).

2Compustat, Worldscope, and Orbis financial-statement datasets, as well as the US,
Colombian, Chilean, India, Indonesia, and Slovenian manufacturing surveys, all do not
include output price information.
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To bridge this gap, we present an approach that delivers unbiased and con-

sistent estimates using only revenue data. Starting from the firm’s cost-

minimization problem, we specify an input share regression that links ob-

servable variables to unobservable firm’s profitability. Drawing on insights

from the production function literature, we introduce a control function for

markups that allows us to recover estimates of revenue elasticities and un-

expected productivity shocks. The control function flexibly models markups

as a specified function of observables and fixed effects, proxying for determi-

nants of market power such as demand and market conditions, supporting a

broad class of variable-markup frameworks. In the absence of price data, we

show controlling for markups instead solves the omitted price bias generated

using only revenues. We then leverage the stochastic process of productiv-

ity to estimate the production function, thus recovering markups. We depart

from modeling the physical productivity process and instead model the rev-

enue productivity process. This approach underlies many study using revenue

data (Klette and Griliches, 1996; De Loecker, 2011; De Loecker and Warzyn-

ski, 2012; De Loecker et al., 2020), and is consistent with persistence results

in Foster et al. (2008). Given this minimal setup, our two-step estimator is

straightforward, consistent, and easily applied to readily accessible datasets.

Our key contribution is to offer a novel method to infer markups without

requiring information on output prices, thus solving a critical long-standing

problem in estimating production functions: the omitted price bias. The first

stage of our suggested estimator is a share regression in the spirit of Gandhi,

Navarro, and Rivers (2020), which directly estimates the revenue elasticity us-

ing the firm’s cost minimization first-order condition. The second stage then

uses information and timing assumptions to separate the effects of inputs on

prices and output, thus recovering its output elasticities. We can then mea-

sure unbiased and consistent firm-level markups with these estimates. Our

framework offers modifications to traditional production function estimators

(Blundell and Bond, 2000) that apply more restrictive productivity structures.

The strength of our approach is that it applies to a wide range of data and

market settings, including potential applications in macroeconomic, trade, la-
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bor, and finance studies. Our approach might outperform standard estimators

even when price data are available. For example, even if we had information

on output prices, we would need to quality-adjust physical quantities to make

sure outputs are comparable across firms, yet quality data are very rare in

practice. Many firms also produce multiple products, which complicates how

researchers should interpret quantity data without added assumptions on the

production process De Loecker (2011). Our approach eases both concerns and

is thus attractive even with price data.

The literature on production function estimation has long noted the omit-

ted price bias in measuring markups with revenue data. Klette and Griliches

(1996) shows that markup estimators are biased and inconsistent without in-

formation on output prices. This bias arises because unobserved prices enter

the residual of the estimating equation but also affect firm input choices (e.g.,

higher prices induce the firm to use more inputs to increase output). Con-

sequently, omitted prices cause a classic simultaneity problem. Doraszelski

and Jaumandreu (2019) extends these results to modern production function

estimators, while Bond et al. (2021) further shows that the bias should lead to

unitary markups for profit-maximizing firms. We see our method as generaliz-

ing the solution in Klette and Griliches (1996), which relies on the restrictive

assumptions of a constant elasticity demand system and monopolistic compe-

tition, thus constant and homogeneous markups. Beyond typical parametric

critiques, these assumptions narrow the very concept of competition and im-

ply zero markup variation within industries. More recently, De Loecker et al.

(2016) uses observed output prices to control for unobserved input price biases,

but the authors work in a rare setting where output price data are available.

Foster, Haltiwanger, and Syverson (2008) suggests that the omitted price bias

is so significant that it changes the observed correlation between physical pro-

ductivity and revenue productivity. De Ridder et al. (2021) shows although

we cannot recover precise markup levels from revenue data, we can estimate

their dispersion both in the cross-section and over time. In sum, the literature

has shown that the omitted price bias is important, but has not yet offered

a general solution for resolving it. We contribute to this literature by offer-
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ing a promising avenue to study market power in a wide range of settings by

tailoring the productivity process and proxy variable assumptions.

Besides addressing the omitted price bias, our paper also relates to the liter-

ature on transmission bias: firms optimally choose their inputs as a function

of their productivity, so productivity simultaneously determines both output

and inputs (Marschak and Andrews, 1944). In an empirical analysis, regress-

ing output on inputs fails to identify a firm’s production function because

the unobservable productivity term transmits into the input decisions, thus

creating a critical endogeneity problem. The literature overcomes this bias

with assumptions about a firm’s production or productivity process. Broadly,

proxy variable estimators (Olley and Pakes, 1996; Levinsohn and Petrin, 2003;

Ackerberg et al., 2015; Gandhi et al., 2020) assume that observable inputs can

control for unobserved productivity, while dynamic panel estimators (Blundell

and Bond, 2000) parametrically impose linearity in the productivity process.

Our suggested method is in the tradition of proxy variable estimators meaning

that it can allow for flexible productivity process, but it allows researchers to

relax the critical assumption of competitive output markets. Our work also

relates to earlier attempts at forming control functions for revenue productiv-

ity directly, as in Flynn, Traina, and Gandhi (2019). One appealing feature is

that in general models of competition, higher planned markups induce lower

chosen flexible inputs; this suggests a straightforward way to microfound the

markup control function in an input demand equation, as in Olley and Pakes

1996. We also derive results showing how to extend methods in the tradition

of dynamic panel estimators.

Our main estimator builds on this line of work by addressing omitted price and

transmission bias simultaneously. We do so by specifying a control function for

markups, as opposed to the typical control function for physical productivity.

We then directly estimate the firm’s revenue elasticity by regressing its flexi-

ble input’s log cost share of revenue on log inputs and fixed effects. Though

similar in spirit to the first stage of Gandhi, Navarro, and Rivers (2020), we

do not identify the flexible input’s output elasticity from this share regression.
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Instead, we use it to partially identify the elasticity by identifying a combina-

tion of the elasticity and markup. We then substitute this composite into the

revenue production equation to control for unobserved revenue productivity.

Together, this method allows us to identify physical output elasticities relying

only on revenue data.

Road-Map. Section 1 introduces a general production model with imper-

fect competition in product markets. Section 2 describes how to adapt the

production model for imperfectly competitive environments, and how to use

our proposed method to recover markups. Section 3 compares our estimator

to existing production function estimation methods and models of imperfect

competition. Section 4 concludes.

1 A Production Model with Markups

In this section, we present a structural model consistent with widely used

approaches to firm-level production function and markup estimation. We con-

sider the contemporary case of imperfect competition in the output market

and cost minimization for a flexible input. This setup links the firm’s markup

to the flexible input’s output elasticity and cost share of revenue (Hall, 1988;

Basu and Fernald, 2002; Petrin and Sivadasan, 2013; De Loecker and Warzyn-

ski, 2012). After deriving the link in our model, we discuss identification

and estimation problems when researchers only have data on revenues (not

quantities). Throughout, we use uppercase to refer to levels of variables and

lowercase to refer to logs of variables.

1.1 Production Technology and Productivity

The economy is populated by profit-maximizing firms with idiosyncratic pro-

ductivity. Each firm generates final output combining a competitively supplied

flexible input Xit, and a vector of nonflexible inputs, Kit, according to the fol-
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lowing function:

Qit = ΩitF (Xit, Kit) (1)

with Ωit representing firm i’s physical productivity (TFPQ in the parlance

of Foster et al. (2008)), and F (·) being the firm’s production function.3 Xit

is flexible in the sense that it is both variable and static: firms may adjust

it in each period after observing the realization of state variables such as

productivity, and its choice has no dynamic implications. Kit is fixed, dynamic,

or both. For exposition, we refer to Xit as intermediates, Kit as capital, and

assume capital is fixed so that it may not respond to current period state

variables. In practice, the flexibility ofXit is crucial to derive a markup formula

that can be estimate on firm-level data.

As in Olley and Pakes (1996), the log productivity term, ait = log(Ωit), is

additively separable into a part known to the firm when making input decision,

ωit ∈ Iit, and an i.i.d. error term, εit /∈ Iit. Firm production is thus

qit = f(xit, kit) + ωit + εit (2)

1.2 Residual Demand and Pricing

Firms may have market power in the output market, so that a single firm’s

residual demand curve may not be perfectly elastic and takes the following

form,

qit = ψitpit + κit (3)

With ψit being the residual demand elasticity that firms internalize in their

pricing choices and κit demand shifter that does not affect markup decisions.

The residual demand curve accounts for competitor responses and thus is a

mix of demand and conduct (Baker and Bresnahan, 1988). For example, a

3The production function is concave and diffentiable at every point. We omit the time
subscript for sake of exposition, but in principle the production function can vary over time.
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monopolist’s residual demand curve is the market demand curve. In a per-

fectly competitive market, a firm’s residual demand curve is flat because any

change in its output is offset by a change in its competitors’ output. The same

reasoning applies to a Bertrand duopolist with undifferentiated products. It

includes information on own and cross elasticities as well as on other firms’

decisions, and it defines an optimal markup level that profit-maximizing firms

endogenously set. In this sense, without imposing additional structure on the

source of market power, ψ can be a mix of competition and demand factors.

Firms choose a price and quantity pair {Pit, Qit} along their residual demand

curves, subject to technology constraints. Firms may choose to price above

marginal cost, thus generating a markup. Markups are equilibrium objects

that depend on demand, costs, market structure, and possibly other factors.

As common to the markups estimated from static cost optimization, the ap-

proach we develop here is consistent with static pricing only and is therefore

inconsistent with sticky price and customer capital models, though similar

principles could be applied. We are otherwise fairly agnostic about the source

of markups, which could arise from product differentiation, consumer tastes,

technological advantages, or concentrated markets, among others.

1.3 Optimization, Information, and Timing

We assume that firms minimize costs and we study the per-period static cost

minimization problem. Each firm uses expected output in its minimization

problem because it knows that it must account for an as-yet-unknown portion

of productivity, εit.

The timing of the problem is as follows. At the beginning of the period,

firms know their capital stock, Kit, and a part of their contemporaneous pro-

ductivity, ωit. First, each firm plans an optimal markup, µit, relying on the

expectation about total factor productivity, ait, along with other information

observable to the firm regarding its residual demand curve. Second, they

choose the corresponding intermediate inputs, Xit, to implement these plans

given their residual demand curve, technology, capital stock, and expected
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productivity. Finally, productivity is fully realized, production occurs, and

markups are realized. Markups are generally not orthogonal to productivity,

since the firm uses its expectation about productivity to plan a markup.

Given this setup, the firm’s cost minimization problem with time t information,

Iit, is

min
Xit

CitXit

s.t. Qit = E[Ait|Iit]F (Xit, Kit)

with Cit being the cost of the flexible inputs. As we will discuss in the esti-

mation section, this will be crucial for estimating markups and is potentially

firm-specific. The Lagrangian of the cost minimization is

Lit = CitXit + Λit(Qit − E[Ait|Iit]F (Xit, Kit)

with Λit being the Lagrangian multiplier, thus the cost of relaxing the quantity

constraint. In this respect, Λit represents firm i’s marginal cost. The first-order

condition for the flexible input Xit is

[Xit] : Cit = ΛitE[Ait|Iit]
∂F (Xit, Kit)

∂Xit

Denote Mit as the markup, Pit as output price, we can manipulate the first-
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order condition to yield

Mit =
Pit

Λit

= E[Ait|Iit]
∂F (Xit, Kit)

∂Xit

Pit

Cit

=
E[Ait|Iit]

Ait

∂F (Xit, Kit)

∂Xit

AitXit

Qit

PitQit

CitXit

=
E[Ait|Iit]

Ait

∂F (Xit, Kit)

∂Xit

Xit

F (Xit, Kit)

PitQit

CitXit

=
E[Eit]
Eit

fX
it

Rit

CitXit

where the last line comes from the fact that the firm knows part of its produc-

tivity before its input choice, E[Ait|Iit]
Ait

= ΩitE[Eit]
ΩitEit = E[Eit]

Eit , the definition of the

output elasticity, fX
it = ∂F (Xit,Kit)

∂Xit

Xit

F (Xit,Kit)
, and revenues, Rit = PitQit.

Defining now the expectation term as bit = logE[Eit], and writing this result

in logs gives us

µit = log fX
it + rit − citxit + bit − εit (4)

That is, the log markup, µit, is the sum of the intermediate input’s output

elasticity, fX
it , the intermediate input’s log inverse cost share of revenue, rit −

citxit, and the unplanned productivity term, bit − εit. Equation 4 is the key

relation that we use to estimate markups with our method.

2 Measuring Markups with Revenue Data

In this section, we describe our novel approach to estimate markups with

revenue data and discuss the underlying assumptions. The aim is to identify

physical output elasticities (and error terms) to measure markups from the

first-order condition of the per-period static cost minimization problem.

We assume we observe data for a panel of firms i = 1, 2, ..., N over periods
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t = 1, 2, . . . , T . We let the data take a short panel form: the number of firms

grows large for a fixed T . For each firm, we observe revenue Rit = PitQit,

expenditures on a competitively supplied flexible input Xit with cost Cit, and a

vector of nonflexible inputs Kit. In practice, the choice of Xit might be energy,

materials, labor, or some combination thereof. We recommend choosing the

input that is most likely to satisfy the competitively supplied and flexible

assumptions based on the empirical setting.

2.1 Problems with Revenue Data

Recovering markups from equation 4 requires an estimate of the output elas-

ticity fX
it . However, we cannot simply regress revenue on inputs to get this

estimate for two critical reasons. The first reason is the omitted price bias

emphasized in Klette and Griliches (1996): higher markups induce the firm to

decrease input use, which increases prices and thus (all else equal) revenues.

The second reason is the transmission bias emphasized in Marschak and An-

drews (1944): higher physical productivity induces the firm to increase input

use, which increases output and thus (all else equal) revenues.

One approach in the literature is to ignore the distinction between revenues and

quantities, and estimating firm production function using common estimation

techniques specifically designed to address the transmission bias. Specifically,

the control function approach pioneered by Olley and Pakes (1996) and the

dynamic panel methods proposed by Blundell and Bond (2000) are the most

common methods. However, these existing methods to estimate production

function parameters are designed for perfectly competitive environments and

rely on physical quantity data. An empirical strategy that treats the revenue

production function estimates as though they are physical production function

estimates confounds demand with productivity (Foster et al., 2008) and results

in markup estimates devoid of empirical content (Bond et al., 2021). Hence,

we cannot use them in this context. Our method tackles this issue directly

by including a control function approach in the spirit Olley and Pakes (1996)

and allowing for imperfect competition. It requires only revenue data and is
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a generalization of the Klette and Griliches (1996)’s correction.

2.2 Our Approach: Controlling for Markups

At the core of our method there is the law of motion of productivity and a

control function to proxy for markups. The former is common to the literature

both for control function approach, that assumes a Markov process for total

factor productivity, and for dynamic panel methods, that assumes a linear

process. Given that our aim is to provide an estimation method using revenue

data, we focus instead on revenue productivity. The latter relates to the

approach used in the control function literature and brings insights also from

the share regression proposed by Gandhi et al. (2020). Given that our approach

deals with markup estimation using only revenue data, we propose to control

for markups directly rather than only for unobserved productivity. In what

follow, we describe the approach in details.

Assumption 1 (The Stochastic Process of Revenue Productivity) Let

revenue productivity νit = pit + ωit (the sum of prices pit and physical produc-

tivity ωit) follow a Markov process with additively separable mean-zero shocks

ηit. Hence, P(νit|Iit−1) = P(νit|νit−1), and E[ηit|Iit−1] = 0.

Following Assumption 1, we can write the stochastic process of revenues pro-

ductivity as

νit = g(νit−1) + ηit (5)

for some continuous function g(νit−1) = E[νit|νit−1]. This stochastic process

is consistent with the persistence in revenue productivity shown in Foster

et al. (2008) and, relative to the literature, it is equivalent to the existing

assumptions of Klette and Griliches (1996), De Loecker (2011), and De Loecker

and Warzynski (2012). De facto, this is implicitly assumed in every study using

revenue data to estimate a production function (e.g., in De Loecker et al.,

2020).
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Now, we write firm revenues as

rit = pit + qit

= pit + f(xit, kit) + ωit + εit

= f(xit, kit) + νit + εit

Where the second line comes from the definition of f(xit, kit), and the third

line comes from the definition of the revenue productivity νit. Therefore, we

can express the revenue production function as

rit = f(xit, kit) + g(νit−1) + ηit + εit (6)

The latter can be used to estimate production function parameters leveraging

assumptions on firms’ information and timing to construct moment condi-

tions. However, we first need to recover a measure of revenue productivity to

operationalize it. To do so, we use our structural framework. Specifically, we

interpret the first-order condition 4 as a markup function and use it to identify

revenue elasticities.

Assumption 2 (The Markup Control Function.) Let markups be a func-

tion of inputs, firm and time fixed effects ιi and τt, and a vector of other

firm-time varying observables relevant in determining markups Dit

µit = h(xit, kit, ιi, τt,Dit) (7)

We return to examples of possible observables in Section 3. One appealing fea-

ture is that in general models of competition, higher planned markups induce

lower chosen intermediates; this suggests a straightforward way to microfound

the markup control function in an input demand equation, as in Olley and

Pakes (1996). Rewrite the first-order condition 4 as

citxit − rit = log fX
it − µit + bit − εit (8)

= log fX
it − h(xit, kit, ιi, τt,Dit) + bit − εit (9)
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The left-hand side is the intermediates log cost share of revenue. The term

log fX
it − µit on the right-hand side is the log revenue elasticity with respect

to input xit, a mix of supply and demand parameters.4 As productivity is

Hicks-neutral, the log elasticity term fX
it is a function of inputs only: fX

it =

fX(xit, kit). Combining the revenue elasticity terms into a single function

s(xit, kit, ιi, τt,Dit) = log fX(xit, kit)− h(xit, kit, ιi, τt,Dit), our first stage esti-

mating equation becomes:

citxit − rit = s(xit, kit, ιi, τt,Dit) + bit − εit (10)

To operationalize this equation, a researcher may (nonparametrically) regress

the intermediates share of revenues on inputs, fixed effects, and a vector of

markup determinants Dit to get an estimate of the revenue elasticity ŝit =
̂log fX
it − µit. This share regression estimates the specified markup control

function: it describes the determinants of wedges between prices and marginal

costs, and is similar to the share regression in Gandhi, Navarro, and Rivers

(2020), but adapted for cases of imperfect competition with unobserved prices.

Importantly, it also recovers an estimate of the error ε̂it, and therefore b̂it. Esti-

mating ε̂it is the primary function of the first stage of proxy variable estimators

(Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015).

Estimating it here allows us to replace the physical productivity control func-

tion assumption of these models with a markup control function assumption.

However, the share regression alone cannot separate the impact of markups

from output elasticities, since it still contains the unknown fX
it . We now re-

turn to the revenue production function to identify the physical elasticity fX
it .

Specifically, we rewrite the output from estimating the first-order condition to

4log fX
it − µit = log fX

it − log( 1
1+pq

) = log fX
it + log(fX

it pq) = log qXit + log pXit .
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isolate revenue productivity

citxit − rit = ŝit + b̂it − ε̂it (11)

citxit − f(xit, kit)− νit − ε̂it = ŝit + b̂it − ε̂it (12)

νit = citxit − f(xit, kit)− ŝit − b̂it (13)

And we express the revenue production function as

rit = f(xit, kit) + g(cit−1xit−1 − f(xit−1, kit−1)− ŝit−1 − b̂it−1) + ηit + ε̂it (14)

Hence, we can directly estimate production function parameters from this

equations.

2.3 Identifying Returns to Scale and Markups

A well-known limitation in the production function estimation literature is

that it is impossible to separately identifying the flexible input elasticity and

the returns to scale applying the proxy method on common datasets (Gandhi

et al., 2020). Essentially, absent additional source of identification, there exists

a continuum of observationally equivalent production functions that satisfy the

identification restrictions imposed in the proxy approach. Hence, returns to

scale and markups are jointly identified but it is not possible to separate them.

Observing serially correlated input price might solve this non-identification

problem in specific cases, or imposing additional restrictions on the production

function or productivity process.5

To avoid this non-identification issue, we follow the solution proposed by Flynn

et al. (2019) which does not require additional data or assumptions on the

evolution of the production function or productivity process. Specifically, they

show that it is possible to estimate markups by setting the degree of returns to

5Gandhi et al. (2020) and Flynn et al. (2019) provide a detailed discussion on the pre-
cise conditions under which the production function is point identified in the presence of
markups.
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scale ex-ante. The intuition for their result is that by imposing the returns to

scale, thus reducing the free output elasticities, the variation usually captured

by the proxy method can be used to estimate exclusively the flexible input

elasticity. Their findings show that this approach drastically reduces the bias

resulting from the non-identification result by up to twenty times. Therefore,

we assume that firm production function has constant returns to scale.

2.4 Estimation

Here we describe the steps to implement our suggested estimator.

1. Estimate the share regression to recover revenue elasticities and firms’

expectations on productivity. In practice, regress the intermediates

log cost share of revenues (citxit − rit) on log inputs and markup de-

terminants. The latter can include firm and time fixed effects, along

with other observed variables included in the vector Dit.
6 Use the pre-

dicted residual, ε̂it, to form b̂it = log Ê[exp(ε̂it)], and therefore recover

ŝit = ̂log fX
it − µit = citxit − rit − b̂it + ε̂it.

2. Specify functional forms for the production function, f(xit, kit), and the

Markov process, g(νit−1), such as Cobb-Douglas technology with AR(1)

productivity, or translog technology with quadratic Markov productivity.

Note that, as explained above, f(xit, kit) must satisfy a scale elasticity

assumption, such as constant returns to scale. In practice, the main

concern is how to model the intermediates elasticity, because this term

directly affects the markup as seen from the first-order condition 4.

3. Combine the estimates ŝit, b̂it, and ε̂it with data rit and citxit and the

specified functional forms for f(xit, kit) and g(νit−1) to form the revenue

productivity shock η̂it = rit − f(xit, kit)− g(cit−1xit−1 − f(xit−1, kit−1)−
ŝit−1 − b̂it−1) − ε̂it. This shock will be a function of the parameters in

f(xit, kit) and g(νit−1).

6Researchers can specify the information in Dit in line with their models. Examples
include market shares, exporter dummies, location dummies, etc.
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4. Finally, leverage the stochastic revenue productivity process to estimate

the parameters of f(xit, kit) and g(νit−1). Specifically, use the moment

conditions formed by

E[η̂it|kit, ŝit−1] = 0

The specific moments depend upon the specifications of f(xit, kit) and g(νit−1).

For instance, we may add moments for a translog production function by in-

cluding squares and interactions of the nonflexible inputs. We may also add

lags and interactions of the revenue share vector, ŝit, to control for more com-

plicated specifications of the revenue productivity process, g(νit−1). For in-

stance, we could use ŝ2it to control for a second-order process. By construction,

these additional moments are orthogonal to revenue productivity innovations.

In economic terms, costs, demand, and conduct are determinants of markups,

which co-evolve with the TFPR process. Innovations to this process are there-

fore orthogonal to any functions of the costs, demand, or conduct embedded

in the ŝit vector. This two-step approach can also be implemented as a single

step GMM problem by jointly minimizing the residuals in the share regression

together with the moment conditions from the second step (Wooldridge, 2009).

A final notes is in order. There must be independent variation in µit which

does not enter f(xit, kit). This variation can come from the fixed effects ιi

and τt, or the Dit vector of other firm-time observables (we discuss specific

examples in Section 3). With this variation, the model identifies physical

quantity elasticities and markups. Without this variation, the nonparametric

underidentification arguments of Gandhi et al. (2020) will apply. However, we

view this requirement as minimal – the existing revenue productivity literature

suggests persistent dispersion across firms that is independent of other latent

variables such as physical productivity (Foster et al., 2008). Moreover, it is

consistent with empirically successful models of firm dynamics, such as those

studied in Sutton (1991).
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Discussion The production function approach is a very powerful tool to

estimate markup as it requires minimal assumptions on the competition envi-

ronment and the demand system. However, while it offers a relatively straight-

forward markup formula, estimating it with traditional tools requires price in-

formation. Often a prohibitive requirement. Alternatively, more structure can

substitute for the lack of prices. Klette and Griliches (1996) was the first to

proposed a solution of this kind introducing a specific demand system. In fact,

it adopts a monopolistic competition environment with a constant elasticity

of substitution demand system. Markups are constant across firms and time

and can be separately identified markups from production elasticities in this

case. De Loecker (2011) expands this method introducing a product specific

CES demand showing how to aggregate up to the firm-level. More recently,

Gandhi et al. (2020) analyzing this issue proposes to adopt a CES demand

system with time-varying elasticities to allow for variation over time. We see

our proposed method as a generalization of the Klette and Griliches (1996)’s

correction. In terms of additional assumptions, we propose a much more flex-

ible environment that can nest a wide range of the most used models of firm

dynamics and we allow markup to vary along different dimensions.

3 Comparison to Related Literature

In this section, we detail how our estimator compares to commonly used meth-

ods to estimate production functions and then illustrate how to apply it to

models with imperfect competition.

3.1 Comparison to Existing Competitive Models

We first discuss the proxy variable class, then the dynamic panel class. Both

methods form moments from information and timing assumptions about the

productivity process, but differ in other assumptions to achieve identification.
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3.1.1 Proxy Variable Estimators

The proxy model of production (Olley and Pakes, 1996; Levinsohn and Petrin,

2003; Ackerberg, Caves, and Frazer, 2015; Gandhi, Navarro, and Rivers, 2020)

identifies production functions using assumptions about the unobservable state.

Proxy models assume that productivity is Markovian and that productivity

can be written as a control function of observables. These two assumptions

allow one to use lagged inputs to control for current productivity, solving the

transmission bias. More formally, the assumptions of the proxy model are:

Proxy Variable Assumption 1: Physical productivity follows a first-order

Markov process: ωit = g(ωit−1) + ηit.

Proxy Variable Assumption 2: Physical productivity is a control function

of observables: ωit = m(xit, kit).

Proxy Variable Assumption 2 ensures that past inputs can proxy for current

productivity through the productivity process. Then substitution yields

qit = f(xit, kit) + ωit + εit

= f(xit, kit) + g(ωit−1) + ηit + εit

= f(xit, kit) + g(m(xit−1, kit−1)) + ηit + εit

Identification proceeds by forming moments with the composite error term

ηit + εit.

With revenue data, this derivation becomes

rit = f(xit, kit) + pit + ωit + εit

= f(xit, kit) + pit + g(ωit−1) + ηit + εit

= f(xit, kit) + pit + g(m(xit−1, kit−1)) + ηit + εit

The appearance of prices on the right-hand side is the origin of the omitted

price bias terminology.
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Our approach is a direct modification of these two assumptions. For the first,

we assume revenue productivity (TFPR) follows a first-order Markov process,

instead of physical productivity (TFPQ). This assumption is consistent with

Foster, Haltiwanger, and Syverson (2008), which finds that revenue produc-

tivity exhibits similar levels of persistence as physical productivity. It is also

implicit in existing work that estimates revenue production functions, or ex-

plicit in existing work that attempts to correct for the omitted price bias

with richer data or stronger parametric structure (Klette and Griliches 1996,

De Loecker 2011, De Loecker and Warzynski 2012). For the second, we assume

markups are a control function of observables, instead of physical productiv-

ity. Although markups and productivity are both unobservable, researchers

typically impose some markup-setting process or rule in modeling (for exam-

ple, monopolistic competitors facing a constant price elasticity of substitution

demand system). Therefore, we view our assumption on markups as less lim-

iting. More generally, one can think of our model as a version of a proxy

variable estimator, in which we are proxying for markups instead of proxying

for productivity. It is built to estimate markups, and also allows us to relax

some of the physical productivity assumptions.

3.1.2 Dynamic Panel Estimators

The dynamic panel approach pioneered by Blundell and Bond (2000) is a com-

monly used alternative to proxy variable approaches. Dynamic panel models

maintain the same basic structure of production. However, they impose lin-

earity on the productivity process.

Dynamic Panel Assumption: Physical productivity ωit follows an AR(1)

process: ωit = ρωit−1 + ηit.

The unobserved term ηit is uncorrelated with all past and future input choices.
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Then differencing the production function yields

qit − ρqit−1 = f(xit, kit)− f(xit−1, kit−1) + ωit − ρωit−1 + εit − ρεit−1

qit − ρqit−1 = f(xit, kit)− f(xit−1, kit−1) + ηit + εit − ρεit−1

qit = ρqit−1 + f(xit, kit)− f(xit−1, kit−1) + ηit + εit − ρεit−1

The appearance of lagged quantities on the right-hand side is the origin of the

dynamic panel terminology. Identification proceeds by forming moments with

the composite error term ηit + εit − ρεit−1.

With revenue data, this derivation becomes

rit − ρrit−1 = f(xit, kit)− ρf(xit−1, kit−1) + pit − ρpit−1 + ωit − ρωit−1 + εit − ρεit−1

rit − ρrit−1 = f(xit, kit)− ρf(xit−1, kit−1) + pit − ρpit−1 + ηit + εit − ρεit−1

rit = ρrit−1 + f(xit, kit)− ρf(xit−1, kit−1) + pit − ρpit−1 + ηit + εit − ρεit−1

Absent additional assumptions, we cannot proceed further without price data.

However, combining this equation with a version of our earlier Markovian

revenue productivity assumption (νit = g(νit−1) + ηit), we can make progress.

Suppose our earlier assumption of Markovian revenue productivity holds, and

further suppose it is linear, so that revenue productivity follows an AR(1)

process: νit = ρνit−1 + ηit. We can then proceed as follows:

rit − ρrit−1 = f(xit, kit)− ρf(xit−1, kit−1) + pit − ρpit−1 + ωit − ρωit−1 + εit − ρεit−1

rit − ρrit−1 = f(xit, kit)− ρf(xit−1, kit−1) + ηit + εit − ρεit−1

rit = ρrit−1 + f(xit, kit)− ρf(xit−1, kit−1) + ηit + εit − ρεit−1

This derivation does not require a markup control function, and therefore

suggests a similar trade-off as in the competitive case: researchers may impose

more structure (linear) on the productivity process to avoid assumptions that

observables (inputs) and fixed effects span unobservables (markups).
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3.2 Comparison to Imperfect Competition Models

Our solution generalizes much of the existing literature. In our earlier setup,

we showed that our markup function identifies markups so long as Mit is de-

termined partially independently from inputs. Now, we offer several commonly

used parametric examples of markup functions.

3.2.1 Constant Markups: Monopolistic Competition and CES De-

mand

Suppose that firms are monopolistic competitors facing a constant price elastic-

ity of substitution demand system. Suppose further that these firms compete

in a number of industries j. In this environment, a firm i in industry j faces

a demand curve given by Qit = Qjt(
Pit

Pjt
)−σj . Firm optimization implies that

markups are constant within industries and given by Mit = Mjt =
σj

σj−1
.

In the context of our markup function, assuming monopolistic competition

with CES demand implies that µit = µjt: markups are fully determined by a

constant within industry. One may recover markups and elasticities by simply

including an industry fixed effect in the share regression.

This was originally noted in Klette and Griliches (1996). This paper shows

that, in this case, one can estimate (industry-level) production functions by

including controls for the industry quantity production. Klette and Griliches

(1996) uses the estimating equation

rit = β0 +
σj − 1

σj
(βXxit + βKkit)−

1

σj
qjt + νit

Here, qj is an industry-level price index which comes from the monopolisti-

cally competitive environment. Estimation can then proceed using (observed)

industry-level output.

Gandhi et al. (2020) extends the Klette and Griliches (1996) model to allow

for time-varying price elasticities of demand. We can easily accommodate such

an extension by including a time fixed effect in the share regression.
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In sum, our approach is a generalization of the Klette and Griliches (1996) cor-

rection that allows for more conduct and demand structures than monopolistic

competition with CES demand. This generalization is especially important as

it allows credible scaling of production-based markup estimators across many

industries and time periods, where these earlier assumptions might be consid-

erably off.

3.2.2 Variable Markups: Oligopolistic Competition and CES De-

mand

Suppose now that firms are oligopolistic competitors facing a variable price

elasticity of substitution demand system. This is the case when demand is of

the nested CES form: the final good is a CES demand of a continuum of sectors

and each sector good is a CES aggregate of differentiated products (Atkeson

and Burstein, 2008). In this setting, the elasticity of demand is a combination

of the elasticity of substitution across sectors and within own sector, weighed

by the market share of each firm.7

In Cournot competition, markups are a function of firm-specific demand elas-

ticity: µit =
ϵit

ϵit+1
, with the latter being

ϵit =
1

η
(1− sit) +

1

θ
sit (15)

with sit being the market share of firm i, and θ and η the elasticities of sub-

stitution across and within sector, respectively.

In the context of our markup function, assuming oligopolistic competition

with nested CES demand implies that markups are fully determined by a

combination of two constants and firms’ market shares. One may recover

markups and output elasticities by controlling for fixed effects and industry

market shares in the share regression.

7If firms compete in quantities, such combination takes the form of a harmonic mean. If
firms compete in prices, it becomes a weighted mean.
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3.2.3 Variable Markups: Firm-Time Characteristics

We explored two specific models of imperfect competition so far and showed

how our method can recover markups from these cases. In general, our method

is flexible enough to allow the researcher to adapt it to recover markups de-

pending on the framework analyzed and the data available. If the researcher

has data on firm-level characteristics which determine markups, then our

model identifies market power and production elasticities by putting these into

Dit. For instance, advertising, managerial practices, research and development

(Doraszelski and Jaumandreu, 2013), export status De Loecker and Warzyn-

ski (2012), or product mix De Loecker (2011) all might be associated with

markups, and therefore added to the share regression. Any other observable

market characteristics that vary by firm-time, such as combining geographic

variation with consumer income variation, may also be added, depending on

the researcher’s model.

If revenue market shares determine markups, then in our model we have Dit =
Rit

Rjt
, where Rjt is industry revenues. Researchers may define industries j in

whatever way appropriate, such as common industry codes, or broadly or

narrowly defined product markets. Then the markup control function may

again be used to identify markups and output elasticities by adding market

shares to each. Unlike models such as nested CES, this approach does not

impose a parametric relationship between market shares and markups. Rather,

the data determine the relationship.

In microfounding this control variable, typical models of competition such

as homogenous product Cournot and differentiated product Bertrand result

in a mapping from markups to quantity market shares, not revenue market

shares. Of course, if we had quantity market shares, we would have quantity

information, which would obviate the need for revenue data corrections.
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4 Conclusions

This paper addresses the general issue of estimating markups with commonly

available dataset by proposing a method to estimate markups with revenue

data, without requiring information on prices. It recovers unbiased and con-

sistent markup estimates and requires only common regression techniques and

information available in most data settings. The method is based on a produc-

tion function estimator that flexibly models markups as a specified function

of observables and fixed effects and modifies physical productivity process as-

sumptions into revenue productivity process assumptions. This way, we solve

the omitted price bias without imposing additional assumptions on the de-

mand side or the competition structure.

Modelling markups as a function of observable firm characteristics and fixed

effects captures insights from recent macroeconomic and trade models featur-

ing variable markups. Those controls indeed are meant to capture factors

determining variable demand elasticities such as market complementarities or

industry specific characteristics. In addition, assuming a stochastic process

for revenue productivity rather than for quantity productivity, makes explicit

assumptions underlying most of the recent work done in the literature investi-

gating markups and is in line evidence on the dynamics of revenue productivity.

In conclusion, our proposed method provides a simple and effective way to

estimate markups using only revenue data. The method has important im-

plications for researchers and policymakers interested in understanding the

dynamics of product markets and the impact of market power on economic

outcomes. The proposed method has several potential applications and can

be extended to other settings, making it a valuable tool for future research.
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