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Abstract

When output prices are unobserved, standard production-based markup estimators
are biased and inconsistent because they are unable to distinguish whether firms
have higher revenues due to higher prices or higher quantities. Building on work
designed for competitive environments, we propose a novel method that solves this
problem using only revenue data. We flexibly model markups as a specified function
of observables and fixed effects, supporting a broad class of variable-markup frame-
works. We explicitly adopt a Markovian revenue productivity process, a commonly
implicit assumption in the literature. Our suggested two-step approach is simple
in concept and implementation, requiring only common regression techniques.
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Firms in modern economies are experiencing long-term structural shifts: average firm size
is expanding, industries are concentrating, and business dynamism is declining (Grullon
et al., 2019; Decker et al., 2016). Two competing narratives have emerged to explain
these trends. One attributes them to technological change and intangible capital, with
positive welfare implications (Autor et al., 2020; Bessen, 2020). The other attributes
them to market power and entry barriers, with negative welfare implications (De Loecker
et al., 2020; Gutiérrez and Philippon, 2019). Policy responses hinge on which narrative is
correct: should we embrace these changes as inevitable products of technological progress,
or intervene to preserve competitive markets? At the heart of this question is measuring
firm-level markups—the ratio of price to marginal cost—at the macroeconomic scale.
While measuring markups poses deep empirical challenges, the importance of the issue

demands we confront them head-on.

Recent studies respond to this demand by adopting the production approach to markup
estimation (De Loecker et al., 2020; Traina, 2018; Diez et al., 2018; Calligaris et al., 2018).
This approach sidesteps the need to specify demand or competition, making it scalable
across firms and time. However, the production-function estimators underpinning this ap-
proach were designed for perfectly competitive environments. In such settings, variation
in prices only reflects variation in quality, so revenue is a good stand-in for “quality-
adjusted” output. But imperfectly competitive environments muddle the link between
revenue and output because we don’t know whether revenues are high because of high
quality-adjusted output or market power. Indeed, recent work argues for a fundamental
role of detailed price information to recover unbiased and consistent markup estimates
(Klette and Griliches, 1996; Doraszelski and Jaumandreu, 2019; Bond et al., 2021).! The
empirical challenge is that most production datasets offer only revenue information, not

2 Researchers interested in studying competition at macroeconomic scales face a

price.
frustrating gap between their econometric frameworks and the data available to estimate

them.

To bridge this gap, we present an approach that delivers unbiased and consistent markup
estimates using only revenue data. Consider the mechanics of production-based markup

estimation. Cost minimization implies markups equal the ratio of any flexible input’s

!Using an industry price index to recover quantities does not solve this problem (Bond et al., 2021)
except in two special cases: perfect competition, or no firm heterogeneity in prices (Hashemi et al.,
2022).

2Compustat, Worldscope, and Orbis financial-statement datasets, as well as the US, Colombian,
Chilean, India, Indonesia, and Slovenian manufacturing surveys, do not include output price information.



output elasticity to its revenue share. In practice, researchers observe revenue shares and
estimate output elasticities, inferring production-based markups as the residual. The key
challenge is to disentangle what part of revenue share variation reflects technology (output
elasticity), and what part reflects market power (markup). To do so, we need separating
variation that affects one but not the other. Economic theory tells us such variation
exists—anything that affects markups through pricing, such as proxies for demand or

competitive behavior, should shift markups without affecting technology.

Starting from the firm’s cost-minimization problem, we draw out the link between the
flexible input’s revenue share and its production function and unobserved firm revenue
productivity. We model markups as a flexible function of observables and fixed effects—
demand conditions, market structure, and other determinants of market power—allowing
us to recover revenue elasticities and productivity shocks realized only after firms make
production decisions. To be precise, this markup function allows the share regression to
identify revenue elasticities, which combine output elasticities with markups. We then
leverage the revenue productivity process to separate these components. We show this
approach solves the omitted price bias generated with revenue data, and our framework

accommodates a broad class of variable-markup frameworks.

We depart from modeling the physical productivity process and instead model the revenue
productivity process. Though unconventional at first blush, this approach is consistent
with data limitations and grounded either implicitly or explicitly in the vast majority of
earlier work (Klette and Griliches, 1996; De Loecker, 2011; De Loecker and Warzynski,
2012; De Loecker et al., 2020). Foster et al. (2008) is one of the few papers with inde-
pendent data to study differences between physical and revenue productivity, and finds
similar estimates for persistence and role in determining exit. Our choice can be viewed
as an alternative to the traditional choice of modeling physical productivity as the single
Markovian state variable that’s a reasonable approximation of the changing conditions
that inform firm decisions. In the Appendix, we discuss the microfoundations for this
commonly-used Markovian revenue productivity assumption, showing how and when it
emerges from equilibrium behavior in dynamic oligopoly models. With better data and
extensions to our method to handle multiple unobservables, one can separate the two.
But given current data limitations, in this paper we’re trying to take a solid step in the
right direction. And given this minimal setup, our two-step estimator is straightforward,

consistent, and easily applied to readily accessible datasets.

Our key contribution is a novel method for inferring markups without requiring output



price data, thus addressing a long-standing problem in estimating production functions:
the omitted price bias. The first stage of our estimator is a share regression in the spirit
of Gandhi et al. (2020), which directly estimates firm revenue elasticities using the cost
minimization first-order condition. The second stage then uses information and timing
assumptions to separate the effects of inputs on prices and output, recovering output
elasticities. We can then measure unbiased and consistent firm-level markups with these
estimates. Our framework also suggests modifications to traditional production function
estimators (Blundell and Bond, 2000) that impose more restrictive (physical or revenue)
productivity structures. Our approach broadly applies across data sources and market
settings, including potential use in macroeconomic, trade, labor, and finance research.
It might also outperform standard estimators even when price data are available. For
example, even if we had information on output prices, we would need to quality-adjust
physical quantities to make sure outputs are comparable across firms, yet quality data are
even rarer than price data in practice. Many firms also produce multiple products, which
complicates how researchers should interpret quantity data without added assumptions
on the production process De Loecker (2011). Our approach eases both concerns and is

thus attractive even with price data.

The literature on production function estimation has long noted the omitted price bias in
measuring markups with revenue data. Klette and Griliches (1996) shows that markup
estimators are biased and inconsistent without information on output prices. This bias
arises because unobserved prices enter the residual of the estimating equation but also
affect firm input choices (e.g., higher prices spur firms to increase output by using more
inputs). Consequently, omitted prices cause a classic simultaneity problem. Doraszelski
and Jaumandreu (2019) extend these results to modern production function estimators,
while Bond et al. (2021) show the bias leads to measured markups of one for profit-
maximizing firms. Our approach generalizes the solution in Klette and Griliches (1996),
which relies on the restrictive assumptions of constant elasticity demand and monopo-
listic competition, thus implying no variation in markups across firms. Beyond typical
parametric critiques, these assumptions narrow the very scope of competition. More
recently, De Loecker et al. (2016) uses observed output prices to control for unobserved
input price biases, but the authors work in a rare setting where output price data are
available. Foster et al. (2008) suggests the omitted price bias is so significant that it
changes the observed correlation between physical productivity and revenue productiv-
ity. De Ridder et al. (0225) shows although we cannot recover precise markup levels from

revenue data, we can imperfectly learn about their dispersion across firms and over time.
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In their simulations—which focus on a repeated, static, Cournot model of competition
that we adopt for our Monte Carlo experiments—they find a correlation of 0.9 between
revenue-based and true log markups. However, when applying their method to actual
data, the correlation drops to 0.3. In sum, the literature has shown that the omitted
price bias is important, but has not yet offered a general solution for resolving it. We
contribute by offering a promising avenue to study market power in a wide range of

settings by tailoring the proxy variable and productivity process assumptions.

A related literature examines transmission bias: firms optimally choose their inputs as
a function of their productivity, so productivity simultaneously determines both output
and inputs (Marschak and Andrews, 1944). In an empirical analysis, regressing output on
inputs fails to identify a firm’s production function because the unobservable productiv-
ity term transmits into input decisions. The literature overcomes the resulting bias with
assumptions about a firm’s production or productivity process. Broadly, proxy variable
estimators (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015;
Gandhi et al., 2020) assume that observable inputs can control for unobserved produc-
tivity, while dynamic panel estimators (Blundell and Bond, 2000) parametrically impose
linearity in the productivity process. Our suggested method is in the tradition of proxy
variable estimators meaning that it can allow for flexible modeling of the productivity
process, and it allows researchers to relax the critical assumption of competitive output
markets. Our work also relates to earlier attempts at forming control functions for rev-
enue productivity directly, as in Flynn et al. (2019). We also derive results showing how

to extend methods in the tradition of dynamic panel estimators.

Our main estimator builds on this line of work by addressing omitted price and trans-
mission bias simultaneously. We do so by specifying a control function for markups,
as opposed to the typical control function for physical productivity. We then directly
estimate the firm’s revenue elasticity by regressing its flexible input’s log cost share of
revenue on log inputs and fixed effects. Though similar in spirit to the first stage of
Gandhi et al. (2020), we do not identify the flexible input’s output elasticity from this
share regression. Instead, we use it to partially identify the elasticity by identifying a
combination of the elasticity and markup. We then substitute this composite into the
revenue production equation to control for unobserved revenue productivity. Together,

this method allows us to identify physical output elasticities relying only on revenue data.

Section 1 introduces a general production model with imperfect competition in product

markets. Section 2 describes how to adapt the production model for imperfectly compet-



itive environments, and how to use our proposed method to recover markups. Section 3
compares our estimator to existing production function estimation methods and mod-
els of imperfect competition, and Section 4 presents our simulation study. Section 5

concludes.

1 A Production Model with Markups

In this section, we present a structural model consistent with widely used approaches to
firm-level production function and markup estimation. We consider the contemporary
case of imperfect competition in the output market and cost minimization for a flexible
input. This setup links the firm’s markup to the flexible input’s output elasticity and
cost share of revenue (Hall, 1988; Basu and Fernald, 2002; Petrin and Sivadasan, 2013;
De Loecker and Warzynski, 2012). After deriving the link in our model, we discuss
identification and estimation problems when researchers only have data on revenues (not
quantities). Throughout, we use uppercase to refer to levels of variables and lowercase

to refer to logs of variables.

1.1 Production Technology, Productivity, and Pricing

The economy is populated by profit-maximizing firms with idiosyncratic productivity.
Each firm generates final output combining a competitively supplied flexible input X,

and a vector of nonflexible inputs, Kj;, according to the following function:
Qit = Q& F (X, Ky) (1)

with € representing firm ’s physical productivity (TFPQ in the parlance of Foster et al.
2008) and &;; is an unexpected change in physical productivity that occurs after firms
have made decisions (Olley and Pakes, 1996; Gandhi et al., 2020).> F(-) is the firm’s
production function.* Xj, is flexible in the sense that it is both variable and static: firms
may adjust it in each period after observing the realization of state variables such as

productivity, and its choice has no dynamic implications. K is fixed, dynamic, or both.

3The only restrictions on the ex-post shock € are that it is independent of the firm’s choice of flexible
inputs and that its expectation is finite and constant across firms and time, allowing us to treat E[;]
as a parameter to be estimated or normalized. In principle, even full independence could be relaxed; see
Gandhi et al. (2020) for further discussion.

4The production function is concave and differentiable at every point. We omit the time subscript
for sake of exposition, but in principle the production function can vary over time.



For exposition, we refer to X;; as intermediates, K;; as capital, and assume capital is

fixed so that it may not respond to current period state variables.

Taking logs, where w;; = log(€);;) and ¢;; = log(&;;), firm production is thus:

Git = f (@i, kie) + wie + €at (2)

Firms may have market power in the output market, so that a single firm’s residual
demand curve may not be perfectly elastic.” Firms choose a price and quantity pair
{Py,Qu} along their residual demand curves, subject to technology constraints. Firms
may choose to price above marginal cost, thus generating a markup. Markups are equi-
librium objects that depend on demand, costs, market structure, and possibly other

factors.

1.2 Optimization, Information, and Timing

Firms choose planned output through a broader problem, such as (but not necessarily)
profit maximization. We focus here on the cost minimization problem that is nested
within it. Specifically, firms form a plan for output based on their expectations of pro-
ductivity and demand conditions. They then choose inputs to minimize the cost of
producing this planned level of output. This nested approach is standard in the litera-
ture and provides the basis for deriving a tractable markup expression from the firm’s
first-order condition that also allows for stochastic errors when mapping the model to
data.

The timing of the problem is as follows. At the beginning of the period, firms know
their capital stock, K;;, and their physical productivity, ;. First, each firm plans an
optimal markup, M, relying on the expectation about productivity, €2;, along with
other information. Second, they choose the corresponding intermediate inputs, X;;, to
implement these plans given their residual demand curve, technology, capital stock, and
expected productivity. Finally, the transitory shock &; is realized, production occurs,
and markups are realized. Markups are generally not orthogonal to productivity, since

the firm uses its expectation about productivity to plan a markup.

5The residual demand curve accounts for competitor responses and thus is a mix of demand and
conduct (Baker and Bresnahan, 1988). For example, a monopolist’s residual demand curve is the market
demand curve, while in a perfectly competitive market, a firm’s residual demand curve is flat. It includes
information on own and cross-price elasticities as well as on other firms’ decisions, and it defines an
optimal markup level that profit-maximizing firms endogenously set.



Given this setup, the firm’s cost minimization problem with time ¢ information, Z;, is
min CitXit

Xit

st. ElQu|Zi) = B[t Lit) F (Xit, Kit)

with Cj; being the cost of the flexible inputs. The Lagrangian of the cost minimization

18
Lyt = CuXit + Nit(E[Qit|Zit) — E[QeEit | Zit) F ( Xz, Kit)

with A;; being the Lagrangian multiplier, thus the cost of relaxing the quantity constraint.
In this respect, A;; represents firm ¢’s marginal cost. The first-order condition for the

flexible input Xj; is

aF(XZ'b Klt)

[ t] t t [ t t‘ t] 0X

Denote M;; as the markup, P;; as output price, we can manipulate the first-order condi-

tion to yield

P
M’it = A_Zt

= Bz e D

o E[Qltglt|zzt] 8F(Xlt7 Klt) QitgitX’L't Pit@it

B Q’itgit aX’Lt Qit CitXit

_ ]E[Q’Ltgzt|zlt] 8F(th7 Kzt) X’L -P’LtQZt

Qitgit ath F(Xit7 Kzt) OitXit
_ El&] ,x Ra
= & ioax,

where the last line comes from the fact that the firm knows part of its productivity
E[Q::&it|Tie) _ QuE[Ei] _ E[E

Qit&it T Qu& T &
7 and revenues, R;; = P;;Qy.

before its input choice, it] , the definition of the output elasticity,

X _ OF(Xi,Ki) Xt
it 00Xt F(Xit,Kst

Defining now the expectation term as b = log E[€;], and writing this result in logs gives

us

i = log 75‘;( + i — CipTip + b — €4y (3)



X
it )

That is, the log markup, p;, is the sum of the intermediate input’s output elasticity,
the intermediate input’s log inverse cost share of revenue, r;; — ¢;;x;;, and the unplanned
productivity term, b — ;4. Because our derivation combines the ex-post price with the
ex-ante marginal cost from the firm’s planning problem, the resulting markup term p;;
correctly captures both the firm’s planned markup and the price response to the ex-post

shock. Equation 3 is the key relation that we use to estimate markups with our method.

2 Measuring Markups with Revenue Data

In this section, we describe our novel approach to estimate markups with revenue data
and discuss the underlying assumptions. The aim is to identify physical output elasticities
(and error terms) to measure markups from the first-order condition of the per-period

static cost minimization problem.

We assume we observe data for a panel of firms ¢ = 1,2, ..., N over periodst =1,2,...,T.
We let the data take a short panel form: the number of firms grows large for a fixed 7.
For each firm, we observe revenue R;; = P;Q;;, expenditures on a competitively supplied
flexible input X;; with cost Cj, and a vector of nonflexible inputs Kj;. In practice,
the choice of X;; might be energy, materials, labor, or some combination thereof. We
recommend choosing the input that is most likely to satisfy the competitively supplied

and flexible assumptions based on the empirical setting.

2.1 Problems with Revenue Data

Recovering markups from equation 3 requires an estimate of the output elasticity fi.
However, we cannot simply regress revenue on inputs to get this estimate for two critical
reasons. The first reason is the omitted price bias emphasized in Klette and Griliches
(1996): higher markups induce the firm to decrease input use, which increases prices and
thus (all else equal) revenues. The second reason is the transmission bias emphasized in
Marschak and Andrews (1944): higher physical productivity induces the firm to increase

input use, which increases output and thus (all else equal) revenues.

One approach in the literature is to ignore the distinction between revenues and quan-
tities, and estimating firm production function using common estimation techniques
specifically designed to address the transmission bias. Specifically, the control func-

tion approach pioneered by Olley and Pakes (1996) and the dynamic panel methods



proposed by Blundell and Bond (2000) are the most common methods. However, these
existing methods to estimate production function parameters are designed for perfectly
competitive environments and rely on physical quantity data. An empirical strategy that
treats the revenue production function estimates as though they are physical production
function estimates confounds demand with productivity (Foster et al., 2008) and results
in markup estimates devoid of empirical content (Bond et al., 2021). Hence, we cannot
use them in this context. Our method tackles this issue directly by including a control
function approach in the spirit Olley and Pakes (1996) and allowing for imperfect com-
petition. It requires only revenue data and is a generalization of the Klette and Griliches

(1996)’s correction.

2.2  Our Approach: Controlling for Markups

At the core of our method there is the law of motion of productivity and a control
function to proxy for markups. The former is common to the literature both for control
function approach, that assumes a Markov process for physical productivity, and for
dynamic panel methods, that assumes a linear process. Given that our aim is to provide
an estimation method using revenue data, we focus instead on revenue productivity. The
latter relates to the approach used in the control function literature and brings insights
also from the share regression proposed by Gandhi et al. (2020). Given that our approach
deals with markup estimation using only revenue data, we propose to control for markups

directly rather than only for unobserved productivity.

Because firm-level prices are typically unobserved, the literature since (and including)
Olley and Pakes (1996) has had to model the evolution of a proxy for the physical
productivity primitive, wy. In revenue-based settings, the only commonly available proxy
is revenue productivity, v; = pi + wi. While treating this hybrid object as a state
variable is a plausibly strong assumption given the endogeneity of prices, it is a standard
and necessary approximation used in virtually all empirical applications, including the
seminal works of Olley and Pakes (1996) (see footnote 3), Levinsohn and Petrin (2003),
De Loecker (2011), and De Loecker and Warzynski (2012). This approach can be justified
by the robust empirical finding that revenue productivity is highly persistent and well-

approximated by a low-order autoregressive process (Foster et al., 2008).

Assumption 1 (The Stochastic Process of Revenue Productivity) Let revenue pro-
ductivity vy = py+wy (the sum of prices p; and physical productivity wy ) follow a Markov

process with additively separable mean-zero shocks 1. Hence, P(vig|Zii—1) = P (Vi|Vir—1),
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and Eni|Ziy—1] = 0.

Following Assumption 1, we can write the stochastic process of revenues productivity as
Vit = 9(Vit—1) + Nt (4)

for some continuous function g(vi—1) = E[vit|vie—1].

We discuss the microfoundations for the Markov assumption in Appendix A. We em-
phasize this is a standard maintained assumption in the literature and generalizing or
improving it isn’t our focus; our primary contribution is the development of a novel con-
trol function approach for markups to address the problem of how the omitted price bias

propagates into production elasticities.

Now, we write firm revenues as

Tit = Pit + Qi
= pu + f(@i, kir) + wir + €it
= f(@it, ki) + vir + €t

Where the second line comes from the definition of f(x;, ki), and the third line comes
from the definition of the revenue productivity v;;. Therefore, we can express the revenue

production function as

T = f(@i, ki) + 9Wir—1) + Mie + €a (5)

The latter can be used to estimate production function parameters leveraging assump-
tions on firms’ information and timing to construct moment conditions. However, we
first need to recover a measure of revenue productivity to operationalize it. To do so, we
use our structural framework. Specifically, we interpret the first-order condition 3 as a

markup function and use it to identify revenue elasticities.

Assumption 2 (The Markup Control Function.) Let markups be a function of in-
puts, firm and time fizved effects v; and 1y, and a vector of other firm-time varying observ-

ables relevant in determining markups Dy,

fie = (@i, ki, iy 7, Dig) (6)

11



We return to examples of possible observables in Section 3. One appealing feature is
that in general models of competition, higher planned markups induce lower chosen
intermediates; this suggests a straightforward way to microfound the markup control
function in an input demand equation, as in Olley and Pakes (1996). Rewrite the first-

order condition 3 as

i — T =log fif — pie +b—eq (7)
:1ng7,i( - h(xit7kit7bi77—t7Dit) +b_ Eit (8)

The left-hand side is the intermediates log cost share of revenue. The term log f;X — ;s on
the right-hand side is the log revenue elasticity with respect to input x;;, a mix of supply
and demand parameters. As productivity is Hicks-neutral, the log elasticity term f;¥ is a
function of inputs only: fX = fX(x4, k). Combining the revenue elasticity terms into a
single function s(z, kir, Li, 7o, Dit) = log fX (s, kit) — h(i, kg, ts, 76, Dyt ), our first stage

estimating equation becomes:

cit®it — Tie = S(Tit, ki, Liy 76, Dig) + b — €t (9)

To operationalize this equation, a researcher may (nonparametrically) regress the inter-
mediates share of revenues on inputs, fixed effects, and a vector of markup determinants
D;; to get an estimate of the revenue elasticity §;; = logf/ft tit. This share regression
estimates the specified markup control function: it describes the determinants of wedges
between prices and marginal costs, and is similar to the share regression in Gandhi,
Navarro, and Rivers (2020), but adapted for cases of imperfect competition with unob-

served prices.

Importantly, it also recovers an estimate of the error £;, and therefore b. Estimating £;;
is the primary function of the first stage of proxy variable estimators (Olley and Pakes,
1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015). Estimating it here allows us
to replace the physical productivity control function assumption of these models with a
markup control function assumption. However, the share regression alone cannot separate
the impact of markups from output elasticities, since it still contains the unknown f;\.

We now return to the revenue production function to identify the physical elasticity

Specifically, we rewrite the output from estimating the first-order condition to isolate

12



revenue productivity. The first stage gives the relationship:
CitTit — Tig = Sit T b — €t

By definition, revenue is also 7 = f(x, kit) + Vi +€;. Substituting this into the equation

above and rearranging for v;; yields:
Vip = Cubiy — [ (@i, ki) — 50 — b+ (i — €at)

As in any two-step estimator, we replace the unobserved true shock €;; with our consistent
first-stage estimate &; to form our operational proxy for revenue productivity for the

second stage:®

~

Uit = CitTit — f(%t, kit) — 8 —b (10)

And we express the revenue production function as

Tie = f(@it, Kie) + 9(Dig—1) + Mt + Eir- (11)
Hence, we can directly estimate production function parameters from this equation.

2.3 Identifying Returns to Scale and Markups

A well-known limitation in the production function estimation literature is that it is ex-
ceedingly difficult to separately identify the flexible input elasticity and the returns to
scale applying the proxy method on common datasets. In theory, Gandhi et al. (2020)
show sufficient time-series variation in relative input prices can achieve identification,
but also conclude this approach is largely impractical with common production datasets.
Their Monte Carlo simulations, calibrated to match real-world data, show standard proxy
estimators are significantly biased with wide standard errors even with long panels. Only
when the variance of the input price innovation is amplified to ten times the empirically
observed level do the estimates begin to converge. The practical challenge of using price

variation is a long-standing issue in the literature, which has identified several difficulties,

6This procedure appeals to the properties of two-step GMM estimators, where consistency is estab-
lished by the Law of Large Numbers and Slutsky’s Theorem. While this yields consistent parameter
estimates, correct inference requires adjusting the second-stage standard errors for the ”generated re-
gressor” problem, often via bootstrap or a corrected variance-covariance matrix.

13



including the lack of firm-specific price data and the concern that observed price varia-
tion may reflect unobserved quality differences rather than simple market-price differences
(Griliches and Mairesse, 1995; Ackerberg et al., 2007). While recent work shows carefully
employed price instruments can aid identification, this information is often unavailable
(Doraszelski and Jaumandreu, 2013, 2018). Absent this additional source of identifica-
tion, there exists a continuum of observationally equivalent production functions that
satisfy the identification restrictions imposed in the proxy approach. Observing serially
correlated, firm-specific input prices might solve this non-identification problem in spe-
cific cases, or imposing additional restrictions on the production function or productivity

process.”

To avoid this non-identification issue, we follow the solution proposed by Flynn et al.
(2019) which does not require additional data or assumptions on the evolution of the pro-
duction function or productivity process. Specifically, they show it’s possible to identify
markups by setting the degree of returns to scale ex-ante. Their findings show that this
approach drastically reduces the bias resulting from the non-identification result by up
to twenty times. Therefore, we assume firm production function has constant returns to
scale. Our estimators require known or externally identifiable returns to scale—constant
or otherwise. Researchers could estimate the scale elasticity using external methods such
as those in Basu and Fernald (1997) or Syverson (2004)—studies which also provide em-
pirical evidence that constant returns is a reasonable approximation in many settings.
Alternatively, as Flynn et al. (2019) show, it is possible to identify the scale elasticity
structurally even when it is a function of non-flexible inputs like capital intensity. We
proceed with constant returns for clarity, though our framework generalizes to any known

or externally identified returns to scale.®

2.4 Estimation

Here we describe the steps to implement our suggested estimator.

"Flynn et al. (2019) provide a detailed discussion on the precise conditions under which the production
function is point identified in the presence of markups.

80ur approach is in the tradition of Olley and Pakes (1996) and is distinct from the cost-share
method. While markups can in principle be computed directly from cost shares under constant returns,
this requires observing the full economic cost of all inputs—a demanding requirement when labor markets
are imperfectly competitive or capital has adjustment costs. These measurement challenges were central
to the intellectual history of production function estimation, motivating the field’s shift away from
cost-share methods toward the proxy variable approaches we build upon here (Griliches and Mairesse,
1995).
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1. Estimate the share regression to recover revenue elasticities and firms’ expectations
on productivity. In practice, regress the intermediates log cost share of revenues
(cigxiy—rir) on log inputs and markup determinants. The latter can include firm and
time fixed effects, along with other observed variables included in the vector D;;.”
Use the g(ﬂcted residual, £, to form b = log E[exp(éit)], and therefore recover
5; = log fli( — Mit = CitTip — Tip — b+ Eit-

2. Specify functional forms for the production function, f(z,k;), and the Markov
process, ¢g(vi—1), such as Cobb-Douglas technology with AR(1) productivity, or
translog technology with quadratic Markov productivity. Note that, as explained
above, f(z, ki) must satisfy a scale elasticity assumption, such as constant returns
to scale. In practice, the main concern is how to model the intermediates elasticity,
because this term directly affects the markup as seen from the first-order condition
3.

3. Define the revenue productivity innovation, 7;. First, define the proxy for rev-
enue productivity using the results from the first stage and the definition of the

production function:
Uit = CuTit — f (@i, Kig) — 8t — b

The innovation is the part of current revenue productivity not predicted by its past,

which we construct as:
Nit = Vig — g(Vitfl)

This shock will be a function of the parameters in f(x;, ki) and g(vy_1).

4. Finally, leverage the stochastic revenue productivity process to estimate the pa-
rameters of f(z, ki) and g(v;—1). Specifically, use the moment conditions formed
by

E[ﬁit|kit7 §it71] =0

The specific moments depend upon the specifications of f(x;, ki) and g(vy—1). For a

translog production function, we add moments including squares and interactions of the

9Researchers can specify the information in D;; in line with their models. Examples include market
shares, exporter dummies, location dummies, etc.
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nonflexible inputs. We augment the revenue productivity process by adding lags and
interactions of the revenue share vector, §;. For example, §% controls for a second-
order process. By construction, these additional moments are orthogonal to revenue
productivity innovations. Since costs, demand, and conduct determine markups and co-
evolve with the revenue productivity process, innovations to this process are orthogonal
to any functions of costs, demand, or conduct embedded in the §;; vector. This two-step
approach can also be implemented as a single-step GMM problem by jointly minimizing
the residuals in the share regression with the moment conditions from the second step
(Wooldridge, 2009).

2.5 Discussion of Identification Strategy

Production-based markup estimation requires either strong parametric assumptions about
demand or semi-parametric exclusion restrictions. The literature since Klette and Griliches
(1996) has often chosen the former, achieving identification by assuming constant elas-
ticity of substitution (CES) demand with monopolistic competition. Under these as-
sumptions, all firms face the same demand elasticity, and markups become a simple
function of this single parameter—eliminating the heterogeneity in market power that
researchers often seek to measure. This parametric approach undermines a key advan-
tage of production-based methods, which is their ability to remain agnostic about market
structure and conduct. We take the second approach. We generalize the control function
logic of Olley and Pakes (1996) to settings with imperfect competition, using a flexi-
ble control function for markups. This approach nests the restrictive CES case (where
our control function would reduce to an industry fixed effect) but allows for the richer

heterogeneity in firm conduct that we observe in most real-world markets.

Our approach requires an exclusion restriction: there must be some source of variation
in the markup control function, A(-), that does not directly affect the production tech-
nology, f(-). To see why, consider the revenue elasticity from our first-stage equation:
s(it, kit Liy 7, Dig) = log fX (i, kit) — h(@is, kg, s, 7, Dig). The core identification chal-
lenge formalized by Gandhi et al. (2020) is that the observable revenue elasticity on the
left-hand side is a function of two unobservables on the right-hand side: the physical
output elasticity and the markup (embedded in A(-)). Without additional information,

there is a continuum of function pairs (log f*, h) that are observationally equivalent.

Our exclusion restriction breaks this underidentification by ensuring that some arguments

of h(-)—mnamely ¢;, 7, or elements of D;;—do not enter f(-). To see how this works, denote
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inputs as Wy = (24, ki) and excluded variables as Z;; (which could be firm effects, time
effects, or demand proxies). When we observe how revenue shares vary with Z; while
holding inputs constant, we learn about the markup function. Specifically, for any two

values of the excluded variables, the difference in conditional expectations
E[Sit | Wi, Ziy = Z] - ]E[Sit | Wit, Ziy = 2/] = _<h(VVita 2) - h(Wita Z/))

identifies the markup function up to a normalization. Once we pin down h(-) by normal-
izing it at some baseline (say, h(Wy,zy) = 0), we can recover the production function
from the first-stage regression. Of course, this requires that Z;; actually varies condi-
tional on inputs and that we impose a scale restriction like constant returns to avoid the
flexible-input elasticity issue identified by Gandhi et al. (2020) and Flynn et al. (2019).

But these are economic restrictions we can defend based on our institutional setting.

The identifying variation can come from three sources: firm fixed effects (¢;), time dum-
mies (1), or observable firm characteristics in the vector D;;. The choice depends on
the economic setting. If firm fixed effects primarily capture persistent technical capa-
bilities (some firms have better engineers), they belong in the production function and
cannot serve as exclusions. But if these fixed effects mainly reflect persistent differences
in market power—brand value, prime locations, established customer relationships—they
provide valid identifying variation. These sources of market power affect the price-cost
margin without changing how inputs transform into output. Similarly, time effects 7
work as exclusions when they capture demand-side phenomena like business cycles that
affect willingness to pay, rather than technology shocks that would alter production ca-

pabilities.

The researcher must justify these modeling choices based on institutional knowledge.
In consumer goods industries, brand effects likely create persistent markup differences
unrelated to production technology. In commodity industries, firm fixed effects might
primarily reflect differences in extraction or processing efficiency and would need to be
included in the production function. The key is being explicit about what drives the

variation and defending why it belongs in markups rather than technology.

The Markov process for revenue productivity v serves a specific statistical purpose.
It isolates unexpected productivity shocks from predictable variation, ensuring that the
innovations n;; are orthogonal to predetermined variables. This isn’t a structural assump-

tion about productivity evolution—it’s a forecasting device that purges variation firms
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could anticipate when making input decisions. The actual separation between markups
and physical productivity comes from our first-stage share regression, where the control
function A(-) absorbs the markup variation. Once we control for markups in the first
stage, the second-stage moments cleanly identify the production function parameters

using only these orthogonal innovations.

Observable controls for D;; should be variables that plausibly affect firm conduct or
demand conditions without directly entering the production function. Market concen-
tration measures affect strategic interactions and pricing power without changing how a
firm transforms inputs into output. Export status can shift the demand elasticity a firm
faces without altering its production technology. Advertising expenditure creates market
power through brand awareness rather than production efficiency. The panel structure
offers additional opportunities: lagged market shares or competitors’ characteristics can

shift the residual demand curve without affecting the firm’s own production capabilities.

Market interactions provide another source of identifying variation. In our model from
Section 1, firms choose their optimal markup based on anticipated productivity and resid-
ual demand conditions before selecting inputs. Variables that shift the residual demand
curve—lagged competitors’ productivity realizations, predetermined regulatory changes
affecting rivals—can influence a firm’s input choices through their effect on expected

market conditions, as long as they don’t directly affect the firm’s production technology.

A remaining concern is that markups depend on unobserved demand heterogeneity. Our
markup control function h(-) addresses this by flexibly capturing how observables corre-
late with demand conditions and their effect on markups. By conditioning on firm fixed
effects, time effects, and demand proxies in the first-stage share equation, we absorb much
of this heterogeneity. The resulting productivity innovation is then orthogonal to pre-
determined variables, breaking the simultaneity between input choices and unobserved
shocks. If demand shocks correlate with inputs in ways our control function cannot
capture, some bias remains—a challenge shared by all production-based markup esti-
mation methods (De Loecker and Warzynski, 2012; Doraszelski and Jaumandreu, 2018).
Researchers can assess validity by including additional demand proxies and testing the

orthogonality of their moment conditions when the model is overidentified.

We trade restrictive parametric assumptions about demand (like CES) for more flex-
ible but still economically motivated exclusion restrictions. Rather than assuming all

firms face identical demand curves, we allow heterogeneous market power while requir-
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ing researchers to specify and defend which variables affect markups versus technology.
This approach extends the control function tradition in production function estimation
to imperfectly competitive settings, providing a practical middle ground between fully

parametric and fully nonparametric approaches.

3 Comparison to Related Literature

In this section, we detail how our estimator compares to commonly used methods to
estimate production functions and then illustrate how to apply it to models with imperfect

competition.

3.1 Comparison to Existing Competitive Models

We first discuss the proxy variable class, then the dynamic panel class. Both methods
form moments from information and timing assumptions about the productivity process,

but differ in other assumptions to achieve identification.

3.1.1 Proxy Variable Estimators

The proxy model of production (Olley and Pakes, 1996; Levinsohn and Petrin, 2003;
Ackerberg, Caves, and Frazer, 2015; Gandhi, Navarro, and Rivers, 2020) identifies pro-
duction functions using assumptions about the unobservable state. Proxy models assume
that productivity is Markovian and that productivity can be written as a control func-
tion of observables. These two assumptions allow one to use lagged inputs to control for
current productivity, solving the transmission bias. More formally, the assumptions of

the proxy model are:

Proxy Variable Assumption 1: Physical productivity follows a first-order Markov

process: wy = g(wi—1) + Mit-

Proxy Variable Assumption 2: Physical productivity is a control function of observ-

ables: wy = m(zi, kit).1°

Proxy Variable Assumption 2 ensures that past inputs can proxy for current productivity

10This is the standard assumption used in the proxy variable literature and represents the most direct
application of the control function approach. It can be extended to include richer sets of controls—such
as input prices or market shares.
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through the productivity process. Then substitution yields

Gt = flwi, ki) +wir + e
= f(@it, kit) + g(wit—1) + 0it + €it
= f(zu, kir) + g(m(Ti—1, ki—1)) + Mt + €it

Identification proceeds by forming moments with the composite error term 7;; + €.

With revenue data, this derivation becomes

rie = [T ki) + pie + wir + €it
= f(xu, kit) + Dir + g(wit—1) + Nie + €it
= f(wu, kit) + pie + g(m(@i—1, kie—1)) + it + i

The appearance of prices on the right-hand side is the origin of the omitted price bias

terminology.

Our approach is a direct modification of these two assumptions. For the first, we assume
revenue productivity follows a first-order Markov process, instead of physical produc-
tivity. This assumption is consistent with Foster, Haltiwanger, and Syverson (2008),
which finds that revenue productivity exhibits similar levels of persistence as physical
productivity. It is also implicit in existing work that estimates revenue production func-
tions, or explicit in existing work that attempts to correct for the omitted price bias with
richer data or stronger parametric structure (Klette and Griliches 1996, De Loecker 2011,
De Loecker and Warzynski 2012). For the second, we assume markups are a control func-
tion of observables, instead of physical productivity. Although markups and productivity
are both unobservable, researchers typically impose some markup-setting process or rule
in modeling (for example, monopolistic competitors facing a constant price elasticity of
substitution demand system). Therefore, we view our assumption on markups as less
limiting. More generally, one can think of our model as a version of a proxy variable
estimator, in which we are proxying for markups instead of proxying for productivity. It
is built to estimate markups, and also allows us to relax some of the physical productivity

assumptions.
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3.1.2 Dynamic Panel Estimators

The dynamic panel approach pioneered by Blundell and Bond (2000) is a commonly used
alternative to proxy variable approaches. Dynamic panel models maintain the same basic
structure of production. However, they impose linearity on the productivity process.
Dynamic Panel Assumption: Physical productivity w; follows an AR(1) process:
Wit = PWit—1 + Mt

The unobserved term 7);; is uncorrelated with all past and future input choices. Then

differencing the production function yields

Git — pGit—1 = [T, kir) — f(@ir—1, kir—1) + wir — pwie—1 + €1t — peit—1
Git — pQi—1 = (@i, ki) — f(@ir—1, ki—1) + 0 + €00 — peir—
Gt = PGit—1 + [(Tits kir) — f(Ti—1, Kit—1) + Die + €1t — pEit—1

The appearance of lagged quantities on the right-hand side is the origin of the dynamic
panel terminology. Identification proceeds by forming moments with the composite error

term n;, + i — PEi—1-

With revenue data, this derivation becomes

rie — pricmr = f(@i, ki) — pf (Tir—1, kit—1) + Dit — pPir—1 + Wir — pwir—1 + it — PEi—1
rie — prim1 = f(@i, ki) — pf(@ie—1, ki—1) + Dit — pPit—1 + it + €it — pEir—1
rie = pria—1 + (@i, ki) — pf(@Ti—1, ki—1) + Dit — pPit—1 + it + €it — pPEit—1

Absent additional assumptions, we cannot proceed further without price data. However,
combining this equation with a version of our earlier Markovian revenue productivity
assumption (v = g(vi—1) + 1), we can make progress. Suppose our earlier assumption
of Markovian revenue productivity holds, and further suppose it is linear, so that revenue

productivity follows an AR(1) process: vy = pvy—1+n;.. We can then proceed as follows:

Tit — prie—1 = [, kit) — pf(Tit—1, kit—1) + Pit — PPir—1 + Wit — pwit—1 + Eit — PEit—1
rie — pri—1 = [z, ki) — pf(@ie—1, ki—1) + e + €it — peir—1
rie = pri—1+ (@i, ki) — pf(@Cie—1, kie—1) + it + €it — peir—1
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This derivation does not require a markup control function, and therefore suggests a sim-
ilar trade-off as in the competitive case: researchers may impose more structure (linear)
on the productivity process to avoid assumptions that observables (inputs) and fixed

effects span unobservables (markups).

3.2 Comparison to Imperfect Competition Models

Our solution generalizes much of the existing literature. In our earlier setup, we showed
that our markup function identifies markups so long as M, is determined partially
independently from inputs. Now, we offer several commonly used parametric examples

of markup functions.

3.2.1 Constant Markups: Monopolistic Competition and CES Demand

Suppose that firms are monopolistic competitors facing a constant price elasticity of
substitution demand system. Suppose further that these firms compete in a number of
industries 7. In this environment, a firm ¢ in industry j faces a demand curve given by
Qi = th(%)_"f. Firm optimization implies that markups are constant within industries
and given by M;; = M, = L

O’j—l'
In the context of our markup function, assuming monopolistic competition with CES
demand implies that p; = pj: markups are fully determined by a constant within
industry. One may recover markups and elasticities by simply including an industry

fixed effect in the share regression.

This was originally noted in Klette and Griliches (1996). This paper shows that, in this
case, one can estimate (industry-level) production functions by including controls for the

industry quantity production. Klette and Griliches (1996) uses the estimating equation,

O'j—l

1
rie = Bo + ) (Bxwit + Brkir) — ;th + Vit

J J

Here, g; is an industry-level price index which comes from the monopolistically com-

petitive environment. The residual term v;; collects firm-level productivity, specifically

w;t + €4, scaled by the markup factor Uff 7,1, consistent with the CES demand struc-
J
ture and constant-markup pricing rule. Estimation can then proceed using (observed)

industry-level output to proxy for price variation across firms.
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Gandhi et al. (2020) extends the Klette and Griliches (1996) model to allow for time-
varying price elasticities of demand. We can easily accommodate such an extension by

including a time fixed effect in the share regression.

In sum, our approach is a generalization of the Klette and Griliches (1996) correction
that allows for more conduct and demand structures than monopolistic competition with
CES demand. This generalization is especially important as it allows credible scaling
of production-based markup estimators across many industries and time periods, where

these earlier assumptions might be considerably off.

3.2.2 Variable Markups: Oligopolistic Competition and CES Demand

Suppose now that firms are oligopolistic competitors facing a variable price elasticity of
substitution demand system. This is the case when demand is of the nested CES form:
the final good is a CES aggregate from a continuum of sectors and each sector good is a
CES aggregate of differentiated products (Atkeson and Burstein, 2008). In this setting,
the elasticity of demand is a combination of the elasticity of substitution across sectors

and within own sector, weighed by the market share of each firm.!!

In Cournot competition, markups are a function of firm-specific demand elasticity: p; =

6:}%1’ with the latter being

1 I
= |=(1=su) + 75 12
€it |:?7( S t) + 93 t:| ( )
with s; being the market share of firm 4, and ¢ and 7 the elasticities of substitution

across and within sector, respectively.

In the context of our markup function, assuming oligopolistic competition with nested
CES demand implies that markups are fully determined by a combination of two con-
stants and firms’ market shares. One may recover markups and output elasticities by

controlling for fixed effects and industry market shares in the share regression.

3.2.3 Variable Markups: Firm-Time Characteristics

We explored two specific models of imperfect competition so far and showed how our

method can recover markups from these cases. In general, our method is flexible enough

UTf firms compete in quantities, such combination takes the form of a harmonic mean. If firms compete
in prices, it becomes a weighted mean.
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to allow the researcher to adapt it to recover markups depending on the framework ana-
lyzed and the data available. If the researcher has data on firm-level characteristics which
determine markups, then our model identifies market power and production elasticities
by putting these into D;;. For instance, advertising, managerial practices, research and
development (Doraszelski and Jaumandreu, 2013), export status De Loecker and Warzyn-
ski (2012), or product mix De Loecker (2011) all might be associated with markups, and
therefore added to the share regression. Any other observable market characteristics
that vary by firm-time, such as combining geographic variation with consumer income

variation, may also be added, depending on the researcher’s model.

BRiy
Rj’
where Rj; is industry revenues. Researchers may define industries j in whatever way

If revenue market shares determine markups, then in our model we have D;; =

appropriate, such as common industry codes, or broadly or narrowly defined product
markets. Then the markup control function may again be used to identify markups
and output elasticities by adding market shares to each. Unlike models such as nested
CES, this approach does not impose a parametric relationship between market shares

and markups. Rather, the data determine the relationship.

In microfounding this control variable, typical models of competition such as homogenous
product Cournot and differentiated product Bertrand result in a mapping from markups
to quantity market shares, not revenue market shares. Of course, if we had quantity
market shares, we would have quantity information, which would obviate the need for

revenue data corrections.

4 Estimator Evaluation in Simulated Data

We evaluate our revenue-based estimator in simulated data environments with hetero-
geneous market conducts, structures and demand systems. We simulate data from four
partial equilibrium models that share the same supply side but differ in demand structure.
The first model features Cournot (quantity) competition, while the other three feature
Bertrand (price) competition, allowing us to isolate the role of demand heterogeneity
in driving estimation bias. For each model, we estimate markups using our method
and compare the resulting elasticities with those obtained from three alternative estima-
tors. Importantly, we intentionally constrain our method to use only minimal controls to
establish conservative performance benchmarks, while noting that the framework’s flex-

ibility allows for substantial improvements when researchers can incorporate additional
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market-specific information.

4.1 Data Generating Processes

All models feature a fixed number of single-product firms in multiple industries producing
differentiated goods. Firms produce output y;; with a Cobb-Douglas production function

with idiosyncratic productivity wy, a flexible input z;;, and a fixed input k;,

. a1.l—a
Vit = wirTyky

Firms observe their idiosyncratic productivity prior to choosing input levels, and opti-
mally adjust the flexible input z;; each period to maximize profits. Productivity and
capital evolve according to AR(1) processes following De Ridder et al. (0225). We sim-
ulate fifty periods. In the first model, we simulate 1440 firms across 180 sectors; in the
others, 800 firms across 80 sectors. Further details on model characteristics, solution and

calibration appear in Appendix B.

The models differ in their demand structure.

4.1.1 Nested CES

In the first framework, based on Atkeson and Burstein (2008), firms engage in Cournot
competition with a nested CES demand structure. The output of N, firms in each sector
s is aggregated into sectoral goods y,, which are then aggregated into final good via CES

aggregators:
n 0

N ] L e
=D ou | y= {/ ys' ds} :
i=1 0

with 7 = 10 and 6 = 1.1 governing within- and across-sector substitution, respectively.

4.1.2 Logit

In the Logit framework, firms compete in prices, and a representative consumer chooses
among J differentiated products. The indirect utility of consumer ¢ from product j in

sector s is

Uijs = OPjs + TjsY + Ejs + Eijs (13)
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where ¢ < 0, pjs, Tjs, ;s are the price, observed and unobserved characteristics of the
product j, common within a sector s. g;;5 are idiosyncratic taste shocks distributed as

the Type I Extreme Value distribution.

4.1.3 Nested Logit

The third framework extends the second by allowing for correlation in consumer unob-
served utility across products within a nest, reflecting more realistic substitution patterns.
Products are partitioned into G mutually exclusive nests. Consumers first choose a nest

g, then a product 5 € g. Utility is
Uijgs = Ojs + OUgs + (1 — 0)esjs, (14)

where 05 = ¢pjs + 57 + &js, Vg5 is the unobserved utility component common to all
products in nest g and o € [0,1) captures within-nest correlation. When o = 0, the

model reduces to the standard logit model.

4.1.4 Random Coefficients

The random coefficients model extends the Logit specification by allowing for consumer
heterogeneity in preferences over observable characteristics. Preferences are type-specific
and drawn from a two-point distribution around a common mean, generating two con-

sumer types with different sensitivities to product characteristics.

4.2 Competing Methods

We apply four estimators to each simulated dataset. All estimators use aggregate defla-
tors to construct real revenues, reflecting standard practice when firm-level price indices

are unavailable.

Measuring markups on revenue data (KMT) The KMT estimator adjusts for the
use of revenue data by controlling for market shares and fixed effects in the estimation

of the flexible input share.!?

It then recovers output elasticities using the stochastic
evolution of revenue productivity, as in typical applications where only revenues and

input costs are observed.

12In this exercise, we use firm and sector times year fixed effects. While we restrict attention to these
minimal controls for comparability across models, the KMT framework allows researchers to incorporate
additional demand and market structure variables into the D;; vector as discussed in Section 3.
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Linear regression model (OLS) A simple log-log regression of deflated sales on

inputs, which implicitly assumes constant markups and interprets revenues as quantities.

Standard production approach (ACF) The production approach outlined in De Loecker
and Warzynski (2012) to measure markup recovering the output elasticities following
Ackerberg et al. (2015). Specifically, treating deflated revenues as quantities, we estimate
a first stage with a control function for productivity to purge output from measurement
error. Then, we use the stochastic process of physical productivity to recover the variable

input elasticity.

Dynamic panel method (BB) Based on Blundell and Bond (2000), this method
estimates the production function in first differences using lagged deflated levels as in-

struments under an AR(1) assumption for productivity.

4.3 Estimation Results

Our baseline simulations deliberately adopt a conservative approach to demonstrate the
robustness of the KMT estimator. We use only the most commonly available controls:
revenue-based market shares and fixed effects (firm and sector-year), which represent
the minimal information typically available to researchers working with financial data.
This conservative specification establishes a lower bound on the method’s performance.
Researchers with access to additional information about demand conditions, product
characteristics, or market structure can incorporate these variables into the D;; vector,

potentially achieving even better results than those reported here.

Table 1 compares the estimated output elasticities of the flexible input across demand and
competition environments. The true elasticity is o = 0.60. In the Nested CES Cournot
setting, KMT estimates 0.605 (bias < 1%), while OLS, ACF, and BB overestimate by
23%, 33%, and 22% respectively. This bias arises because, in this highly structured
demand system, a firm’s high productivity is strongly correlated with its market share,
which in turn is a key determinant of the market price index. Standard estimators, which
are misspecified for this environment, misattribute this complex, equilibrium price-index

effect to a higher-than-true output elasticity.

In the logit, nested logit, and random-coefficients logit settings, KMT produces estimates
of 0.596, 0.577, and 0.619, with all biases under 4%. By contrast, OLS, ACF, and

BB underestimate elasticities in these environments. The degree of bias varies with
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Model True KMT OLS ACF BB

Nested CES 0.600 0.605 0.738 0.797 0.730
Logit 0.600 0.596 0.512 0.554 0.589
Nested Logit 0.600 0.577 0.535 0.593 0.623

Random Coefficients Logit 0.600 0.619 0.512 0.562 0.579

Table 1: Output Elasticity Estimates Across Models

the demand system: ACF performs well in the nested logit (bias under 2%), while BB
shows minimal bias in the simple logit. However, neither alternative method performs
consistently across all environments, while KMT maintains accuracy throughout despite

using only minimal controls.

Across all four environments, KMT maintains consistent accuracy despite differences in
demand structure, while conventional estimators display systematic bias whose sign and
magnitude depend on the demand system. In the structured Nested CES environment,
traditional estimators overstate elasticities by 22-33%. In the Logit-family environments
with more idiosyncratic demand shocks, they typically understate them, though the
magnitude varies with the specific demand specification. These biases translate directly

to the estimated markup distributions.

Table 2 reports the mean, median, and standard deviation of estimated markups, along

with their bias relative to the true values, for each simulated environment.

In the Nested CES model with its structured demand system, KMT’s mean estimate
(1.266) deviates by less than 1% from the true value (1.252) with accurate dispersion.
OLS, ACF, and BB all overstate average markups, with mean biases from 0.272 (BB) to
0.414 (ACF), reflecting their inability to account for the correlation between prices and

inputs in this environment.

In the Logit model, KMT produces a mean bias of —-0.007. OLS and ACF understate
markups substantially, while BB performs better with a bias of —0.022. This pattern

reflects how the Logit demand structure affects revenue elasticity estimation.

In the Nested Logit model, KMT’s mean markup deviates by 0.048 from the true value.
ACF produces the smallest bias (—0.015) in this setting, while BB overshoots by 0.048.
BB’s positive bias suggests its differencing strategy overcorrects when product charac-

teristics are correlated within nests.

In the Random Coefficients Logit model, KMT’s mean markup estimate is 0.039 above
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Method Mean Median SD  Mean Bias Median Bias
Nested CES Model

True 1.252  1.246  0.048 ) )
KMT 1.266 1.266  0.090 0.013 0.010

OLS 1.542  1.536  0.085 0.289 0.287
ACF 1.667 1.661  0.092 0.414 0.412
BB 1.525  1.519 0.084 0.272 0.270

Logit Model
True 1.202  1.196  0.037 i )
KMT 1.195 1.191 0.050 -0.007 -0.008

OLS 1.027  1.023  0.033 -0.176 -0.177
ACF 1.110  1.105 0.036 -0.093 -0.094
BB 1.180  1.176  0.038 -0.022 -0.023

Nested Logit Model
True 1.272  1.262  0.058 . .
KMT 1.225  1.216  0.074 -0.048 -0.049

OLS 1.135  1.127  0.053 -0.138 -0.139
ACF 1.258  1.249  0.059 -0.015 -0.015
BB 1.321  1.312  0.062 0.048 0.049

Random Coefficients Logit Model
True 1.202  1.196  0.037 . .
KMT 1.241  1.236  0.052 0.039 0.038

OLS 1.027  1.023  0.033 -0.175 -0.177
ACF 1.126  1.121  0.036 -0.077 -0.078
BB 1.160  1.155  0.037 -0.043 -0.043

Table 2: Markup Distribution and Bias Across Models

the true value, while OLS shows the largest underestimation (-0.175). KMT estimates
higher markup dispersion than other methods, which may reflect markup heterogeneity

across product—market pairs under preference heterogeneity.

These results demonstrate the robustness of the KMT estimator across diverse mar-
ket environments. By directly addressing the use of revenue data and controlling for
endogenous productivity and market shares, KMT consistently outperforms traditional

approaches that misinterpret revenue as quantity and fail to correct for price endogeneity.

To illustrate the method’s extendibility, we next examine performance when researchers
have access to richer controls, following the discussion in Appendix A. While our base-
line simulations use only revenue-based market shares and fixed effects—the minimal

controls typically available—many empirical settings offer additional information. When
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Model True KMT Absolute Bias Relative Bias

Nested CES 0.600 0.605 0.005 0.008
Logit 0.600 0.601 0.001 0.002
Nested Logit 0.600 0.600 0.000 0.001
Random Coefficients Logit 0.600 0.597 -0.003 -0.005

Table 3: Output Elasticity Estimates Across Models With Perfect Controls

we augment the control set by including the true price directly (representing an ideal
scenario where researchers have detailed price data), as shown in Table 3, the estimator
recovers the true elasticities with near-zero bias in all four models. This demonstrates
that our framework can fully exploit additional control variables when available. Re-
searchers with access to quantity-based market shares, input prices, demand shifters,
or other market-specific variables can incorporate these into the D;; vector to further

improve estimation.

The flexibility of our approach represents a key advantage: with only minimal controls
(fixed effects and revenue-based market shares), it already substantially reduces the bias
that plagues existing methods; with comprehensive controls tailored to the specific em-
pirical setting, it can achieve unbiased estimates. This extendibility allows researchers to
leverage their institutional knowledge and data availability to improve estimation beyond

the conservative baseline demonstrated here.

5 Conclusion

This paper addresses the problem of estimating markups when only revenue data are
available by proposing a method that works without information on prices. It recovers
unbiased and consistent markup estimates using only common regression techniques and
information available in most datasets. The method is based on a production function
estimator that flexibly models markups as a function of observables and fixed effects
and treats revenue productivity rather than physical productivity as the state variable.
This approach solves the omitted price bias without imposing additional assumptions on

demand or competition structure.

Modeling markups as a function of observable firm characteristics and fixed effects cap-
tures insights from recent macroeconomic and trade models featuring variable markups.

These controls capture factors determining variable demand elasticities such as market
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complementarities or industry specific characteristics. In addition, the stochastic process
for revenue productivity makes explicit assumptions underlying most recent work investi-

gating markups and is consistent with evidence on the dynamics of revenue productivity.

Our method provides a simple and effective way to estimate markups using only rev-
enue data. It has important implications for researchers and policymakers interested in
understanding the dynamics of product markets and the impact of market power on eco-
nomic outcomes. The approach can be extended to various empirical settings, making it

a valuable tool for future research.
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Appendix

A Economic Content of the Revenue Productivity
Process

This appendix provides microfoundations for Assumption 1 in Section 2, which states
that revenue productivity v; = p; + w;; follows a Markov process. A natural concern
is why the sum of an endogenous price and physical productivity should follow such a
process when prices are choice variables that respond to market conditions. The following
analysis shows this Markovian structure can plausibly emerge from equilibrium behavior
rather than being an arbitrary assumption.

As in the main text, let uppercase denote levels and lowercase logs. Revenue productivity
is
Vit = Pit + Wit,

log price plus log physical productivity.

Consider the following economic environment consistent with a large class of dynamic
oligopoly models with Markov-perfect equilibria in the spirit of Ericson and Pakes (1995).
At each point in time, an industry state S; captures all payoff-relevant information: firms’
productivity levels, demand shifters, and other economic conditions. This state evolves
according to a first-order Markov process:

Sy = F(S;-1,¢et),

where ¢; represents the vector of shocks. We assume competition within each period is
static, so prices and quantities are fully determined by the current state without dynamic
strategic effects across periods. Given state S;, each firm chooses its price optimally ac-
cording to the relevant equilibrium concept (monopolistic competition, oligopoly, etc.).
Together with the firm’s physical productivity w;;, which is itself part of S, this deter-
mines revenue productivity through the equilibrium mapping;:

Vi = Vz‘(St)-

The stochastic process for v follows directly from this equilibrium structure. Define
the conditional expectation function g(s) = E[V;(S;) | Si—1 = s], which represents the
expected revenue productivity given yesterday’s state. The innovation or surprise com-
ponent is then n; = vy — g(Si—1). By construction, 7;; has mean zero conditional on
S;_1. To connect this to the firm’s decision problem, we assume that the firm’s infor-
mation set when making input choices at ¢ — 1 is no richer than the industry state:
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0(Zit—1) C 0(S;—1). This holds when firms observe the current industry state but not
future shocks, or when any private information is already incorporated into S;_;. Under
this assumption, the law of iterated expectations gives us:

E[nit | Zit—1] = E[E[n:¢ | St-1] | Zizr—1] = E[0 | Zis—1] = O.

Therefore:
Vit = g(Si=1) + e, E[nit | Zi—1] = 0. (A1)

This equation establishes that revenue productivity follows a predictable process as a
natural consequence of equilibrium behavior. To see why endogenous pricing doesn’t
destroy this structure, note that the equilibrium mapping V;(-) incorporates both com-
ponents: the firm’s physical productivity (which is part of S;) and its optimal pricing
response to market conditions (also determined by S;). Rather than treating prices and
productivity as separate random processes that we hope combine nicely, the equilibrium
approach shows they jointly evolve according to the industry state dynamics.

Implementation requires addressing the fact that the full state S;_; is high-dimensional
and unobservable. Assumption 1 in the main text imposes that lagged revenue produc-
tivity provides a sufficient statistic for forecasting—what we term scalar sufficiency:

P(Vit | St—l) == P(Vit | Vi,t—l)- (A2)

Under this condition, the process simplifies to v = g(vit—1) + 1 where g(v;;—1) =
E[vit|vi¢—1], yielding equation (4) of the main text. While convenient, scalar sufficiency
can fail if other elements of S;_; have independent persistence and predictive power for
v;; beyond what is captured by v; ;.

Before examining when scalar sufficiency holds, we address a basic time-series concern.
Even if prices and productivity each follow AR(1) processes, their sum is generally not
AR(1). For AR(1) processes with parameters ¢, and ¢, and serially uncorrelated inno-
vations (allowing contemporanecous correlation):

(1= 0¢,L)(1 = ¢ L) vy = (1 = poL)uyy + (1 — ¢pL)wys,

where wu;; and wy; are the respective innovations. The right side forms a bivariate MA(1)
process, making v;; generically ARMA(2,2). Special alignments (equal AR roots or pro-
portional innovations) can yield ARMA(2,1), but AR(1) only emerges in knife-edge
cases. This matters because an ARMA(2,2) process requires two lags of revenue pro-
ductivity plus moving average terms for exact representation—complexity that a sim-
ple AR(1) specification would miss. However, when one persistence parameter domi-
nates—particularly when ¢, > ¢, because productivity shocks are more persistent than
transitory price movements—an AR(1) approximation may capture most of the dynam-
ics. When this approximation is inadequate, researchers must include additional lags and
state variables: ¢(v; 41, Zi1—1,Vii—2, .- .).
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Three economically relevant cases yield exact scalar sufficiency. First, when a single
persistent index drives all relevant variation and revenue productivity is a one-to-one
function of this index. Specifically, if U, = pU;_1 +u; and vy = ‘Z-(Ut) where V; is strictly
monotone, then knowing v;;_; uniquely determines U;_;, which suffices for prediction.
This case requires both that all variation loads on a single factor and that the mapping
preserves information about that factor.

Second, in linear—Gaussian environments where S; = AS; 1 + ¢, and Vi(S;) = ¢.S,, if
¢; is a left eigenvector of A satisfying ;A = A\, for eigenvalue A, then Elv; | Si—1] =
ASi_1 = ASi—1 = Ay, yielding an exact AR(1) process. While this knife-edge
condition rarely holds precisely, it illustrates how linear state dynamics can generate
simple revenue productivity dynamics.

Third, when both markups and productivity respond to the same scalar persistent shifter,
scalar sufficiency can hold. For instance, if a common demand or cost factor drives both
market power and productivity decisions, and this factor follows an AR(1) process, then
revenue productivity inherits this scalar structure. However, if markups respond to one
persistent factor while productivity responds to a different one, scalar sufficiency fails
and augmented controls become necessary.

More generally, when scalar sufficiency fails, researchers need multiple proxy variables to
span the multidimensional state space. As emphasized in Ackerberg et al. (2007), when
the true state is multidimensional, a single proxy cannot capture all relevant variation.
The augmented specification becomes:

Vit = 9(Vir—1, Zig—1) + Nut, (A.3)

where Z;;_; includes additional state variables such as lagged capital, input prices, or
market structure variables analogous to the controls D;; in the markup control function.
When these variables together span the relevant predictive information from S;_;, this
specification recovers the true conditional expectation.

Researchers can test for failures of scalar sufficiency by examining whether additional lags
or controls have incremental predictive power and verifying that estimated innovations
7 are orthogonal to observed predetermined variables in the researcher’s instrument set.
While we cannot test orthogonality to the unobserved information set Z;; ; directly, we
can test against observables that should be measurable with respect to it. Capital and
input prices with independent dynamics, strategic interactions not captured by own past
performance, or state-dependent measurement error can all violate scalar sufficiency.

For implementation, researchers construct the revenue productivity proxy using the pro-

cedure detailed in Section 2. After obtaining §;; = log f¥ — i and €; from the first-stage
share regression: X
Vit = CiyTi — f(xita kit) — 534 — b

This formalization extends the control-function tradition in production estimation (Olley
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and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg et al., 2015) by making explicit
why revenue productivity can serve as a state variable despite endogenous prices. It pro-
vides theoretical support for treating revenue productivity as Markovian—the ”standard
maintained assumption” referenced in the main text and applied throughout the litera-
ture. Although not the primary focus of our paper, by deriving conditions under which
this structure emerges from equilibrium primitives, the analysis shows that endogenous
pricing need not undermine the tractability required for estimation—providing a formal
justification for Assumption 1 when these conditions are approximately satisfied.

B Simulation Details

This appendix provides additional information on the four simulated data-generating
processes used in Section 4, including parameter values and distributional assumptions
for productivity, input prices, and demand characteristics. Each model is solved for 50
periods. The Nested CES model features 1440 firms across 180 sectors (8 firms per
sector), while the Logit, Nested Logit, and Random Coefficients models each contain 800
firms across 80 sectors (10 firms per sector).

B.1 Supply-Side

All models feature firms that produce output according to a Cobb-Douglas production
function:
Yi = waxGki %,

where x;; is a variable (flexible) input, k;; is a quasi-fixed input, and w;; is firm-level
productivity. The parameter @ = 0.6 represents the output elasticity of the flexible
input.

Productivity follows an AR(1) process:

logwit = pwlogwii—1 + v, v ~ N(0, a2).

Capital evolves as:

log kit = prlogkis—1 + G, Gt ~ N(0, 7).

Flexible input prices are idiosyncratic and follow:

log Zit = pzlog Z; 11 + &, Eit ~ N0, U%)-

All models assume the same production parameters: o = 0.6, p, = 0.7, pr = 0.66,
pz = 0.9, and standard deviations o, = 0.10, o}, = 0.30, and o = 0.20.*

13While this calibration is not linked to an empirical exercise, we take most of the parametrization
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B.2 Nested CES

The environment features a competitive final-good sector, 180 industries indexed by s,
and 8 heterogeneous firms ¢ = 1, ...,8 within each industry.'* Firms produce differenti-
ated intermediates using the Cobb—Douglas production function and engage in Cournot
competition.

Let p;s denote the price set by firm ¢ in sector s, and let p, and p be the corresponding
CES price indices at the sector and final-good levels. Demand for sector s is given by
ys = (p/ps)?y, while demand for firm i’s product is y;, = (ps/pis)"ys. The final-good price
}1/(1_9) 8 1#;] 1/(1-n)

index satisfies p = [ fol pi=lds , and the sector index is p, = [, p;.

Substituting across levels yields firm-level demand:
Yis = Dp;”pg“’, where D = p?y.
Each firm’s revenue-based market share is s;s = (pss/ps)' ™", and the perceived elasticity
of demand is:
~1
11— Sis + Sis
€is — — .
[ Ul 0 ]

This elasticity averages between the within- and across-sector elasticities, and varies
endogenously with market share.

Firms maximize static profits. Letting mc;s denote marginal cost, the optimal price

satisfies:
€is

Dis = [hisMCis, Where ;s = .
€is — 1

Markups depend on perceived elasticity and hence vary with firm size.

Equilibrium. An equilibrium consists of firm-level variables {p;s, Yis, Tis, fhis, MCis, Sisy Ps }
such that: firm output y;, is consistent with demand; the sector price index p, aggregates
firm prices; market shares s;; reflect firm prices relative to the sector index; perceived
elasticities ¢;s are implied by market shares; markups pu;s are chosen optimally; prices
satisfy firms’ first-order conditions; marginal costs mc;, are consistent with cost mini-
mization given Cobb-Douglas technology; and input choices z;; are optimal given factor
prices and firm productivities.

Parameter Values. We follow De Ridder et al. (0225) in setting the demand elastic-
ities to n = 10 and # = 1.1, and in introducing time variation in demand through an
AR(1) process for log D;.

from De Ridder et al. (0225).
14 This framework is based on Atkeson and Burstein (2008) and implemented following De Ridder et al.
(0225).
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B.3 Logit

There is a continuum of consumers choosing among differentiated products offered by 10
single-product firms in each of 80 sectors. Firms compete in prices (Bertrand competi-
tion), recognizing the impact of their prices on market shares. The supply side features
the same technology and input structure as the Nested CES model.

Each consumer j in sector s receives utility from product i according to:'®
Ujis = PPis + 0isY + &is + Ejiss

where p;, is the price of product i, 0;4 its observed characteristic, and ;5 an unobserved
demand shifter. The idiosyncratic taste shocks ¢;;5 follow a Type I Extreme Value dis-
tribution.

Aggregating over consumers yields the standard Logit demand system. Denoting mean
utility by ;s = ¢pis + 0is7 + &is, product ¢’s market share in sector s is:

eais
Sig = ———+.
142 e €
The elasticity of demand is:
asis Dis
€is — - = isl_sis-
apis Sis ¢p ( )

Using the Logit elasticity, the Bertrand pricing rule becomes:

1
Dis = [bisCis, ~Where ;s =

T

1+ —
€is

Markups are increasing in demand elasticity and depend on both price sensitivity and

market share.

Equilibrium. Given productivities w;s, flexible input prices Z;, and fixed inputs ks,
an equilibrium is a set of firm-level variables {pis, Yis, Tis, flis, Cis, Sis} such that: prices
Pis satisfy the firm’s first-order condition; market shares s;; are consistent with the Logit
demand system; demand elasticities €;, reflect price and share; markups pu;, follow from
the Bertrand rule; marginal costs ¢;s are implied by cost minimization; and input choices
x;s are optimal given factor prices and productivity.

Parameter Values. In the Logit simulation, we set the price coefficient to ¢ = —1.6
and the coefficient on observed characteristics to v = 1, in line with values used in

15We restrict firms to be single-product, so each product corresponds to a firm.
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structural demand estimation. Each sector has a fixed market size M, = 100. The
observed product characteristic ;5 evolves over time according to an AR(1) process with
persistence p, = 0.90 and standard deviation o, = 0.20. The unobserved characteristic
& is set to a constant value of 3 across all products and periods, which ensures a realistic
share for the outside option.

B.4 Nested Logit

The nested Logit model generalizes the standard Logit framework by relaxing the In-
dependence of Irrelevant Alternatives (IIA) assumption. It allows for correlation in
unobserved utility across products within a nest, introducing more realistic substitu-
tion patterns. In our setting, each sector s contains 10 single-product firms, which we
partition into G = 2 mutually exclusive nests (5 products per nest).

Consumers make choices in two stages: they first select a nest g € {1,2} and then choose
a product ¢ within that nest. Consumer utility is given by:

Uijgs = Ois + 0gs + (1 — 0)eijgs,

where 0,5 = ¢pis + 057 + &is is the mean utility, ¢4, is a common shock shared across all
products in nest g, and ¢;;4 follows a Type I Extreme Value distribution. The parameter
o € [0,1) controls the correlation in unobserved utility within nests.

Product-level market shares decompose into two components. The within-nest share s;q
captures the probability of choosing product ¢ conditional on choosing nest g, while the
nest share s, s reflects the probability of choosing nest g among all available nests (and
the outside option). These are given by:

dis/(1-0)
S; =
ilg,s Zkeg €5ks/(1_0) )

(Zkeg eaks/uw) 7
14 25:1 (> ken 65’“/(1_0))1_(77

Sisg = Sg,s * Silg,s-

Sg,s

The own-price elasticity for product ¢ in group g is:

€isg = ;bfi‘; (1= 0Sijgs — (1 — 0)54s9) -

As in the Logit case, profit-maximizing firms set prices according to the markup rule:
1
Pis = HisCis, Where p; =
1+

€isg
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Equilibrium. The definition of equilibrium is identical to the Logit case described.
The only difference is the computation of demand elasticities, which now depend on
both within- and across-nest substitution patterns.

Parameter Values. We set the number of nests to G = 2 and the nesting parameter to
o = 0.5, capturing moderate within-nest correlation in consumer preferences. Products
are assigned evenly to nests, so each nest contains five products within a sector. All other
parameters—including production and demand coefficients—are identical to those in the
Logit specification.

B.5 Random Coefficients Logit

The Random Coefficients Logit model generalizes the standard Logit specification by
allowing key demand parameters to vary across consumers. This introduces richer sub-
stitution patterns, further relaxing the ITA restriction. We model heterogeneity in prefer-
ences over observable product characteristics, splitting the population into C' = 2 distinct
consumer types.

Each consumer type t = 1,2 is characterized by a taste coefficient v; that enters utility
as follows:

ng = OPis + 03Vt + &is + Ejis
where p; is the price of product ¢ in sector s, o;s is an observable product characteristic,
&is is an unobserved term common across consumers, and €j;; follows a Type I Extreme

Value distribution. Consumers choose the product that yields the highest utility.

Each type faces standard Logit demand, resulting in type-specific market shares:

® _ exp(@pis + 055 + &is)
* 1+ Zkel eXp(@%s + OksYt + fks)

S

The aggregate share for product i is the population-weighted average across types:

C
_ § : (2)
Sis = Wzsis 9
z=1

where 7, represents the population share of consumer type z.

Equilibrium. The definition of equilibrium is identical to the Logit case. The only dif-
ference is that demand elasticities and market shares now reflect consumer heterogeneity
and are computed by aggregating over types.

Parameter Values. We set the type-specific coefficients to v; = 0.5 and v, = 1.5, with
equal population weights m; = mo = 0.5. All other parameters—including production and
demand coefficients—are identical to those in the Logit specification.
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Because the presence of consumer heterogeneity prevents a closed-form expression for
own-price elasticities, we compute them numerically using finite differences.
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